Home About us Contact | |||
Cycle Stages (cycle + stage)
Kinds of Cycle Stages Selected AbstractsFluctuation of chromatin unfolding associated with variation in the level of gene expressionGENES TO CELLS, Issue 7 2004Noriko Sato We examined whether spontaneous alteration of chromatin structure, if any, correlates with variation in gene expression. Gene activation is associated with changes in chromatin structure at different levels. Large-scale chromatin unfolding is one such change detectable under the light microscope. We established cell clones carrying tandem repeats (more than 50 copies spanning several hundred kb) of the GFP (green fluorescent protein)-ASK reporter genes driven by a tetracycline responsive promoter. These clones constitutively express the transcriptional transactivator. Flow cytometry and live-recording fluorescence microscopy revealed that, although fully activated by a saturating amount of doxycycline, GFP-ASK expression fluctuated in individual cell clones, regardless of the cell cycle stage. The GFP-ASK expression changed from lower to higher levels and vice versa within a few cell cycles. Furthermore, the levels of GFP-ASK expression were correlated with the degrees of chromatin unfolding of the integrated array as detected by FISH (fluorescent in situ hybridization). The chromatin unfolding was not coupled to a mitotic event; around one-third of the daughter-pairs exhibited dissimilar degrees of chromatin unfolding. We concluded that fluctuation of chromatin unfolding was likely to result in variation in gene expression, although the source of the fluctuation of chromatin unfolding remains to be studied. [source] Cell cycle mechanisms of sister chromatid separation; Roles of Cut1/separin and Cut2/securinGENES TO CELLS, Issue 1 2000Mitsuhiro Yanagida The correct transmission of chromosomes from mother to daughter cells is fundamental for genetic inheritance. Separation and segregation of sister chromatids in growing cells occurs in the cell cycle stage called ,anaphase'. The basic process of sister chromatid separation is similar in all eukaryotes: many gene products required are conserved. In this review, the roles of two proteins essential for the onset of anaphase in fission yeast, Cut2/securin and Cut1/separin, are discussed with regard to cell cycle regulation, and compared with the postulated roles of homologous proteins in other organisms. Securin, like mitotic cyclins, is the target of the anaphase promoting complex (APC)/cyclosome and is polyubiquitinated before destruction in a manner dependent upon the destruction sequence. The anaphase never occurs properly in the absence of securin destruction. In human cells, securin is an oncogene. Separin is a large protein (MW ,180 kDa), the C-terminus of which is conserved, and is thought to be inhibited by association with securin at the nonconserved N-terminus. In the budding yeast, Esp1/separin is thought to be a component of proteolysis against Scc1, an essential subunit of cohesin which is thought to link duplicated sister chromatids up to the anaphase. Whether fission yeast Cut1/separin is also implicated in proteolysis of cohesin is discussed. [source] Effect of aging on corticosterone secretion in diestrous ratsJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2006Ming-Jae Lo Abstract The roles of age and prolactin (PRL) in regulating glucocorticoid secretion in diestrous rats were investigated. Adrenal zona fasciculata-reticularis (ZFR) cells from young, adult, middle (mid)-aged, and old female rats were isolated. Estrous cycle stage was determined by light microscopy after vaginal smears. Blood samples were collected from right jugular vein at 0, 30, 60, and 120 min after challenge with adrenocorticotropin (ACTH). During the diestrous phase, plasma levels of estradiol and progesterone were lower in mid-aged and old rats than in either young or adult rats. Age-dependent increases of the basal levels of plasma PRL and corticosterone were observed. No difference of ACTH-increased plasma concentrations of corticosterone was observed among young, adult, mid-aged, and old rats. Aging increased the basal, ACTH-, PRL-, forskolin (an adenylate cyclase activator)-, and 3-isobutyl-l-methylxanthine (IBMX, a non-selective phosphodiesterase inhibitor)-stimulated release of corticosterone and production of adenosine 3,, 5,-cyclic monophosphate (cAMP) in ZFR cells. However, the 8-Br-cAMP (a membrane-permeable cAMP)-stimulated release of corticosterone was not affected by age. Taken together, these data indicated that aging increased corticosterone secretion in female rats during diestrous phase, which is in part due to an increase in cAMP accumulation. In conclusion, aging and PRL play a stimulatory role in the co-regulation of corticosterone secretion. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source] Population dynamics in Digitalis purpurea: the interaction of disturbance and seed bank dynamicsJOURNAL OF ECOLOGY, Issue 6 2007NINA SLETVOLD Summary 1Plant ecologists have long since realized that the persistence of many facultative biennial plants depends upon disturbance. However, we still have a limited knowledge of the population-level effects of disturbance, and the connection between adult and seed bank dynamics. 2Using data from a 3-year demographic study combined with experimental gap-opening in a large population of Digitalis purpurea, we parameterized stochastic transition matrix models in ,disturbed' vs. ,undisturbed' areas. We simulated different gap sizes (fraction of population that was disturbed) and temporal disturbance patterns (constant, random, regular and irregular return intervals) and evaluated the effects on population growth rate and seed bank dynamics. To explore seed bank importance we used two alternatives for seed bank survival rate (0.75/0.35) and three alternatives for seed bank recruitment fraction (0.9/0.5/0.1). 3Observed background recruitment levels were insufficient to ensure a positive population growth rate. Increased amounts of gap-opening led to higher growth rates, and population persistence was predicted at moderate disturbance levels if seed bank survival was high (0.75). 4Temporal disturbance pattern affected model results; random and interval scenarios resulted in lower population growth rates and higher extinction risks than constant scenarios of the same average disturbance level. Small and frequent disturbances led to considerably higher growth rates than large and rare disturbances. 5Stochastic elasticity analyses identified the seed bank as the most important life cycle stage with respect to population growth and persistence in most scenarios, and its relative impact was positively related to seed bank survival rate and negatively related to disturbance level. Variation in the recruitment fraction from seed bank vs. seed rain affected both population growth rate and elasticity patterns, indicating the large impact of spatial variation in seed bank density. 6Synthesis: Despite the existence of a large seed bank, our data suggest that recruitment may be locally seed-limited due to a patchy seed bank structure. Local population development may consequently differ widely from gap to gap. These results illustrate how spatial structures in both seed bank, adult population and gap formation interact to shape plant population dynamics, as well as the occurrence of microsite- vs. seed-limitation. [source] Effects of Prenatal Ethanol Exposure on Hypothalamic-Pituitary-Adrenal Function Across the Estrous CycleALCOHOLISM, Issue 6 2009Ni Lan Background:, Rats prenatally exposed to ethanol (E) typically show increased hypothalamic-pituitary-adrenal (HPA) responses to stressors in adulthood. Importantly, prenatal ethanol may differentially alter stress responsiveness in male and female offspring, suggesting a role for the gonadal hormones in mediating the effects of ethanol on HPA activity. We investigated the role of ethanol-induced changes in hypothalamic-pituitary-gonadal (HPG) activity in the differential HPA regulation observed in E compared to control females across the estrous cycle. Methods:, Peripheral hormones and changes in central neuropeptide mRNA levels were measured across the estrous cycle in adult female offspring from E, pair-fed (PF) and ad libitum-fed control (C) dams. Results:, Ethanol females showed normal estrous cyclicity (vaginal smears) but delayed sexual maturation (vaginal opening). Both HPG and HPA activity were differentially altered in E (and in some cases, PF) compared to control females as a function of estrous cycle stage. In relation to HPG activity, E and PF females had higher basal and stress estradiol (E2) levels in proestrus compared to other phases of the cycle, and decreased GnRH mRNA levels compared to C females in diestrus. Further, E females had greater variation in LH than PF and C females across the cycle, and in proestrus, only E females showed a significant LH increase following stress. In relation to HPA activity, both basal and stress CORT levels and overall ACTH levels were greater in E than in C females in proestrus. Furthermore, AVP mRNA levels were increased overall in E compared to PF and C females. Conclusions:, These data demonstrate ethanol-induced changes in both HPG and HPA activity that are estrous phase-specific, and support the possibility that changes in HPA activity in E females may reflect differential sensitivity to ovarian steroids. E females appear to have an increased HPA sensitivity to E2, and a possible shift toward AVP regulation of HPA activity. That PF were similar to E females on some measures suggests that nutritional effects of diet or food restriction played a role in mediating at least some of the changes observed. [source] Implementing life cycle assessment in product developmentENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2003Gurbakhash Singh Bhander The overall aim of this paper is to provide an understanding of the environmental issues involved in the early stages of product development, and the capacity of Life Cycle Assessment (LCA) techniques to address these issues. The paper aims to outline the problems for the designer in evaluating the environmental benignity of a product from the outset, and to provide a framework for decision support based on the performance evaluation at different stages of the design process. The barriers that prevent product developers from using LCA are presented, as well as opportunities for introducing environmental criteria in the design process by meeting the designer's information requirements at the different life cycle stages. This can lead to an in-depth understanding of the attitudes of product developers towards the subject area, and an understanding of possible future directions for product development. This paper introduces an Environmentally Conscious Design method, and presents trade-offs between design degrees of freedom and environmental solutions. Life cycle design frameworks and strategies are also addressed. The paper collects experiences and ideas around the state-of-the-art in eco-design, from literature and personal experience, and provides eco-design life cycle assessment strategies. The end result of this presentation is to define the requirements for performance measurement techniques, and the environment needed to support life cycle evaluation throughout the evaluation of early stages of a product system. [source] Sister chromatid cohesion: the cohesin cleavage model does not ring trueGENES TO CELLS, Issue 6 2007Vincent Guacci Sister chromatid cohesion is important for high fidelity chromosome segregation during anaphase. Gene products that provide structural components (cohesin complex or cohesin) and regulatory components responsible for cohesion are conserved through eukaryotes. A simple model where cohesion establishment occurs by replication through static cohesin rings and cohesion dissolution occurs by Esp1p/separase mediated cleavage of the cohesin rings (Mcd1p/Rad21p/Scc1p sub-unit cleavage) has become widespread. A growing body of evidence is inconsistent with this ring cleavage model. This review will summarize the evidence showing that cohesin complex is not static but is regulated at multiple cell cycle stages before anaphase in a separase independent manner. Separase is indeed required at anaphase for complete chromosome segregation. However, multiple mechanisms for cohesion dissolution appear to act concurrently during anaphase. Separase is only one such mechanism and its importance varies from organism to organism. The idea that cohesin is a dynamic complex subjected to regulation at various cell cycle stages by multiple mechanisms makes sense in light of the myriad functions in which it has been implicated, such as DNA damage repair, gene silencing and chromosome condensation. [source] Identification and characterization of antimicrobial peptide, defensin, in the taiga tick, Ixodes persulcatusINSECT MOLECULAR BIOLOGY, Issue 4 2009Y. Saito Abstract Ixodes persulcatus is the primary vector for human tick-borne diseases in Japan. A cDNA library was constructed from whole body homogenates of fed nymphs of I. persulcatus. From this library, one cDNA encoding defensin-like antimicrobial peptide was identified. The amino-acid sequence showed high similarity to those of the defensins of other ticks and arthropods. I. persulcatus defensin mRNA transcripts were detected at all life cycle stages of fed ticks and found to be predominantly expressed in the midguts of adult female ticks, but not in the salivary glands, a finding corroborated by Western blotting analysis. To investigate the function of I. persulcatus defensin, we examined its antibacterial activity by evaluation of growth of several bacterial strains in the presence of the synthetic peptide. The defensin from I. persulcatus markedly inhibited the growth of Gram-positive bacteria including Staphylococcus aureus, Bacillus subtilis and Corynebacterium renale, but not Gram-negative bacteria except Escherichia coli O157. In conclusion, these results suggest that I. persulcatus defensin may be playing a significant role in the defence against microbes from bloodmeals. [source] Expression of synapsin and co-localization with serotonin and RFamide-like immunoreactivity in the nervous system of the chordoid larva of Symbion pandora (Cycliophora)INVERTEBRATE BIOLOGY, Issue 1 2010Ricardo Cardoso Neves Abstract. Cycliophora is one of the most recently described metazoan phyla and hitherto includes only two species: Symbion pandora and Symbion americanus. With a very complex life cycle, cycliophorans are regarded as an enigmatic group with an uncertain phylogenetic position, although they are commonly considered lophotrochozoan protostomes. In order to extend the database concerning the distribution of immunoreactive substances in the free-swimming chordoid larva of S. pandora, we investigated synapsin immunoreactivity using fluorescence-coupled antibodies in combination with confocal laserscanning microscopy. Moreover, we analyzed the co-localization patterns of synapsin, serotonin, and RFamide-like immunoreactivity in the chordoid larva by 3D imaging technology based on the confocal microscopy image stacks. Synapsin is expressed in large parts of the bilobed anterior cerebral ganglion including anterior and dorsal projections. Two pairs of ventral neurites run longitudinally into the larval body of which the inner pair shows only weak, scattered synapsin immunoreactivity. In addition, a lateral synapsin immunoreactive projection emerges posteriorly from each ventral longitudinal axon. Double immunostaining shows co-localization of synapsin and serotonin in the cerebral ganglion, the outer and the inner ventral neurites, and the anterior projections. Synapsin and RFamide-like immunoreactivity co-occur in the cerebral ganglion, the outer ventral neurites, and the dorsal projections. Accordingly, the cerebral ganglion and the outer ventral neurites are the only neural structures that co-express the two neurotransmitters and synapsin. The overall neuroanatomical condition of the cycliophoran chordoid larva resembles much more the situation of adult rather than larval life cycle stages of a number of spiralian taxa. [source] Differential expression of the two distinct replication protein A subunits from Cryptosporidium parvumJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2008Stanley Dean Rider Jr. Abstract Apicomplexan parasites differ from their host by possessing at least two distinct types (long and short) of replication protein A large subunits (RPA1). Different roles for the long and short types of RPA1 proteins have been implied in early biochemical studies, but certain details remained to be elucidated. In the present study, we have found that the Cryptosporidium parvum short-type RPA1 (CpRPA1A) was highly expressed at S-phase in parasites during the early stage of merogony (a cell multiplication process unique to this group of parasites), but otherwise present in the cytosol at a much lower level in other cell-cycle stages. This observation indicates that CpRPA1A is probably responsible for the general DNA replication of the parasite. On the other hand, the long-type CpRPA1B protein was present in a much lower level in the early life cycle stages, but elevated at later stages involved in sexual development, indicating that CpRPA1B may play a role in DNA recombination. Additionally, CpRPA1B could be up-regulated by UV exposure, indicating that this long-type RPA1 is probably involved in DNA repair. Collectively, our data implies that the two RPA1 proteins in C. parvum are performing different roles during DNA replication, repair and recombination in this parasite. J. Cell. Biochem. 104: 2207,2216, 2008. © 2008 Wiley-Liss, Inc. [source] UNCOUPLING OF SILICON COMPARED WITH CARBON AND NITROGEN METABOLISMS AND THE ROLE OF THE CELL CYCLE IN CONTINUOUS CULTURES OF THALASSIOSIRA PSEUDONANA (BACILLARIOPHYCEAE) UNDER LIGHT, NITROGEN, AND PHOSPHORUS CONTROL1JOURNAL OF PHYCOLOGY, Issue 5 2002Pascal Claquin The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light- (E), nitrogen- (N), and phosphorus- (P) limited growth rates. In all growth conditions investigated, the decrease in the growth rate was linked with a higher relative contribution of the G2+M phase. The other phases of the cell cycle, G1 and S, showed different patterns, depending on the type of limitation. All experiments showed a highly significant increase in the amount of biogenic silica per cell and per cell surface with decreasing growth rates. At low growth rates, the G2+M elongation allowed an increase of the silicification of the cells. This pattern could be explained by the major uptake of silicon during the G2+M phase and by the independence of this process on the requirements of the other elements. This was illustrated by the elemental ratios Si/C and Si/N that increased from 2- to 6-fold, depending of the type of limitation, whereas the C/N ratio decreased by 10% (E limitation) or increased by 50% (P limitation). The variations of the ratios clearly demonstrate the uncoupling of the Si metabolism compared with the C and N metabolisms. This uncoupling enabled us to explain that in any of the growth condition investigated, the silicification of the cells increased at low growth rates, whereas carbon and nitrogen cellular content are differently regulated, depending of the growth conditions. [source] The Determinants of Successful Micro-IPOs: An Analysis of Issues Made under the Small Corporate Offering Registration (SCOR) ProcedureJOURNAL OF SMALL BUSINESS MANAGEMENT, Issue 3 2001James C. Brau In this article we extend the existing IPO literature to the case of micro-IPOs by analyzing a sample of Small Corporate Offering Registration (SCOR) documents from the U.S. state of Washington. Through theory, we identified variables that should impact the probability of success or failure in a SCOR offering and then empirically tested them. Empirical support was found for the relevance of (1) marketing mechanisms and expenses; (2) ownership and governance factors; (3) business life cycle stages; and (4) signaling factors consistent with our theoretical predictions. [source] A family of stage-specific alanine-rich proteins on the surface of epimastigote forms of Trypanosoma bruceiMOLECULAR MICROBIOLOGY, Issue 1 2007Simon Urwyler Summary A ,two coat' model of the life cycle of Trypanosoma brucei has prevailed for more than 15 years. Metacyclic forms transmitted by infected tsetse flies and mammalian bloodstream forms are covered by variant surface glycoproteins. All other life cycle stages were believed to have a procyclin coat, until it was shown recently that epimastigote forms in tsetse salivary glands express procyclin mRNAs without translating them. As epimastigote forms cannot be cultured, a procedure was devised to compare the transcriptomes of parasites in different fly tissues. Transcripts encoding a family of glycosylphosphatidyl inositol-anchored proteins, BARPs (previously called bloodstream alanine-rich proteins), were 20-fold more abundant in salivary gland than midgut (procyclic) trypanosomes. Anti-BARP antisera reacted strongly and exclusively with salivary gland parasites and a BARP 3, flanking region directed epimastigote-specific expression of reporter genes in the fly, but inhibited expression in bloodstream and procyclic forms. In contrast to an earlier report, we could not detect BARPs in bloodstream forms. We propose that BARPs form a stage-specific coat for epimastigote forms and suggest renaming them brucei alanine-rich proteins. [source] A clash to conquer: the malaria parasite liver infectionMOLECULAR MICROBIOLOGY, Issue 6 2006Sebastian A. Mikolajczak Summary All mammalian malaria parasite species have an initial tissue stage in liver cells. The liver stage produces new parasite forms that can enter and live inside red blood cells. Accordingly, the first place of residence provides parasites with a radically different cellular and molecular environment from their subsequent red blood cell home. Liver stages have remained refractory to reveal their secrets, yet the last few years have seen several advances in elucidating their biology. This review looks at the more recent findings concerning the liver stage,host hepatocyte association, some of which may become powerful weapons in the prevention of malaria infection. We also outline areas of liver stage research and technological development that provide promising foci to accelerate a better understanding of this most elusive of the parasites many life cycle stages. [source] Stage, age and individual stochasticity in demographyOIKOS, Issue 12 2009Hal Caswell Demography is the study of the population consequences of the fates of individuals. Individuals are differentiated on the basis of age or, in general, life cycle stages. The movement of an individual through its life cycle is a random process, and although the eventual destination (death) is certain, the pathways taken to that destination are stochastic and will differ even between identical individuals; this is individual stochasticity. A stage-classified demographic model contains implicit age-specific information, which can be analyzed using Markov chain methods. The living stages in the life cycles are transient states in an absorbing Markov chain; death is an absorbing state. This paper presents Markov chain methods for computing the mean and variance of the lifetime number of visits to any transient state, the mean and variance of longevity, the net reproductive rate R0, and the cohort generation time. It presents the matrix calculus methods needed to calculate the sensitivity and elasticity of all these indices to any life history parameters. These sensitivities have many uses, including calculation of selection gradients. It is shown that the use of R0 as a measure of fitness or an invasion exponent gives erroneous results except when R0=,=1. The Markov chain approach is then generalized to variable environments (deterministic environmental sequences, periodic environments, iid random environments, Markovian environments). Variable environments are analyzed using the vec-permutation method to create a model that classifies individuals jointly by the stage and environmental condition. Throughout, examples are presented using the North Atlantic right whale (Eubaleana glacialis) and an endangered prairie plant (Lomatium bradshawii) in a stochastic fire environment. [source] Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovaniPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 9 2003Meike Bente Abstract In order to proceed through their life cycle, protozoan parasites of the genus Leishmania cycle between sandflies and mammals. This change of environment correlates with the differentiation from the promastigote stage (insect form) to the amastigote stage (intracellular mammalian form). The molecular basis underlying this major transformation is poorly understood so far; however, heat shock protein 90 (HSP90) appears to play a pivotal role. To further elucidate this process we identified proteins expressed preferentially in either of the two life cycle stages. By using two-dimensional (2-D) gel electrophoresis we observed defined changes in the protein pattern. A total of approximately 2000 protein spots were visualized. Of these, 31 proteins were present only in promastigotes. The abundance of 65 proteins increased during heat-induced in vitro amastigote differentiation, while a decreased abundance is observed for four proteins late in amastigote differentiation. Further analyses using matrix-assisted laser desorption/ionization-time of flight mass spectrometry and peptide mass fingerprinting 67 protein spots were identified representing 41 different proteins known from databases and eight hypothetical proteins. Further studies showed that most of the stage-specific proteins fall into five groups of functionally related proteins. These functional categories are: (i) stress response (e.g. heat, oxidative stress); (ii) cytoskeleton and cell membrane; (iii) energy metabolism and phosphorylation; (iv) cell cycle and proliferation; and (v) amino acid metabolism. Very similar changes in the 2-D protein pattern were obtained when in vitro amastigote differentiation was induced either by pharmacological inhibition of HSP90 or by a combination of heat stress and acidic pH supporting the critical role for HSP90 in life cycle control. [source] cDNA cloning and induction of tyrosine hydroxylase gene from the diamondback moth, Plutella xylostellaARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2010Se Hui Hwang Abstract We cloned a full-length tyrosine hydroxylase cDNA from the integument of the diamondback moth, Plutella xylostella. In the phylogenetic tree, tyrosine hydroxylase (PxTH) clustered with the other lepidopteran THs. Serine residues in the PxTH sequence, namely Ser24, Ser31, Ser35, Ser53, and Ser65, were predicted to be the target sites for phosphorylation based on PROSITE analysis. In particular, Ser35 of PxTH is highly conserved across a broad phylogenetic range of animal taxa including rat and human. Western blot analysis using both PxTH-Ab1 and PxTH-Ab2 polyclonal antibodies verified the expression of PxTH in all life cycle stages of P. xylostella, namely the larval, pupal, and adult stages. To examine the possible immune function of PxTH in P. xylostella, PxTH gene expression was investigated by RT-PCR and western blotting analysis after challenging P. xylostella with bacteria. PxTH expression was elevated 1,h post-infection and was continued till 12,h of post-infection relative to control larvae injected with sterile water. © 2010 Wiley Periodicals, Inc. [source] An insider's guide to the microtubule cytoskeleton of GiardiaCELLULAR MICROBIOLOGY, Issue 5 2010Scott C. Dawson Summary Giardia intestinalis is a zoonotic, parasitic protist with a complex microtubule cytoskeleton critical for motility, attachment, intracellular transport, cell division and transitioning between its two life cycle stages , the cyst and the trophozoite. This review focuses on the structures of the primary elements of the microtubule cytoskeleton and cytoskeletal dynamics throughout this complex giardial life cycle. The giardial cytoskeleton has both highly dynamic elements and more stable MT structures, including several novel structures like the ventral disc that change conformation via unknown mechanisms. While our knowledge of the giardial cytoskeleton is primarily cytological, the completed Giardia genome and recently developed reverse genetic tools affords an opportunity to uncover the mechanisms of Giardia's cytoskeletal dynamics. Fundamental areas of giardial cytoskeletal biology remain to be explored, including high resolution imaging and compositional characterization of cytoskeletal structures required for elucidating the molecular mechanisms of cytoskeletal functioning. [source] |