Home About us Contact | |||
Cycle Process (cycle + process)
Kinds of Cycle Process Selected AbstractsCharacteristics of microcystin production in the cell cycle of Microcystis viridisENVIRONMENTAL TOXICOLOGY, Issue 1 2004Keishi Kameyama Abstract The correlation between the content of three microcystins (types LR, RR and YR) and the cell cycle of an axenic strain of Microcystis viridis, NIES-102, was investigated under conditions of high (16 mg L,1) and low (1.0 mg L,1) nitrate (NO3 -N) concentrations. Each phase of the cell cycle was identified using a flow cytometer equipped with a 488-nm argon laser using SYTOX Green dye, which binds specifically to nucleic acids and can be exited by the wavelength (Ex/Em: 504/523 nm on DNA). Microcystin concentration showed a positive linear correlation with DNA concentration. The microcystin content of the cells changed remarkably as the cell cycle process proceeded, with maximum content in the G2/M phase and minimum content in the G0/G1 phase. Under a condition of high NO3 -N concentration, the ratio of the total content in the G0/G1 phase to that in the G2/M phase was about 6:1. In contrast, for the two batch cultures the total content was 1.3-fold greater in the G2/M phase. The compositions of the three microcystins also changed along with the cell cycle process, although there was little difference in composition that was related to NO3 -N concentration. Therefore, there were distinctive compositions specific to each phase of the cycle, and the cell cycle of the M. viridis strain was more strongly responsible for both the quantity and the types of microcystin production than was the effect of NO3 -N concentration. © 2004 Wiley Periodicals, Inc. Environ Toxicol 19: 20,25, 2004. [source] Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in Saccharomyces cerevisiaeGENES TO CELLS, Issue 6 2006Daniel G. Gibson Chromosomal replication initiates through the assembly of a prereplicative complex (pre-RC) at individual replication origins in the G1-phase, followed by activation of these complexes in the S-phase. In Saccharomyces cerevisiae, the origin recognition complex (ORC) binds replication origins throughout the cell cycle and participates in pre-RC assembly. Whether the ORC plays an additional role subsequent to pre-RC assembly in replication initiation or any other essential cell cycle process is not clear. To study the function of the ORC during defined cell cycle periods, we performed cell cycle execution point analyses with strains containing a conditional mutation in the ORC1, ORC2 or ORC5 subunit of ORC. We found that the ORC is essential for replication initiation, but is dispensable for replication elongation or later cell cycle events. Defective initiation in ORC mutant cells results in incomplete replication and mitotic arrest enforced by the DNA damage and spindle assembly checkpoint pathways. The involvement of the spindle assembly checkpoint implies a defect in kinetochore-spindle attachment or sister chromatid cohesion due to incomplete replication and/or DNA damage. Remarkably, under semipermissive conditions for ORC1 function, the spindle checkpoint alone suffices to block proliferation, suggesting this checkpoint is highly sensitive to replication initiation defects. We discuss the potential significance of these overlapping checkpoints and the impact of our findings on previously postulated role(s) of ORCs in other cell cycle functions. [source] Potential of biomass-fired combined heat and power plants considering the spatial distribution of biomass supply and heat demandINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2010Johannes Schmidt Abstract Combined heat and power (CHP) plants fired by forest wood can significantly contribute to attaining the target of increasing the share of renewable energy production. However, the spatial distribution of biomass supply and of heat demand limits the potentials of CHP production. This article assesses CHP potentials using a mixed integer programming model that optimizes locations of bioenergy plants. Investment costs of district heating infrastructure are modeled as a function of heat demand densities, which can differ substantially. Gasification of biomass in a combined cycle process is assumed as production technology. Some model parameters have a broad range according to a literature review. Monte-Carlo simulations have therefore been performed to account for model parameter uncertainty in our analysis. The model is applied to assess CHP potentials in Austria. Optimal locations of plants are clustered around big cities in the east of the country. At current power prices, biomass-based CHP production allows producing around 3% of the total energy demand in Austria. Yet, the heat utilization decreases when CHP production increases due to limited heat demand that is suitable for district heating. Production potentials are most sensitive to biomass costs and power prices. Copyright © 2009 John Wiley & Sons, Ltd. [source] Efficiencies of NaOH production methods in a Kraft pulp millINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2009Tobias Richards Abstract There are several processes in a Kraft pulp mill where there is a need for sodium hydroxide, e.g. in the digester and the bleaching plant. The objective of this study is to perform a preliminary evaluation, intended to select the best alternative for producing sodium hydroxide on a Kraft pulp mill site. The first step of the evaluation consists of screening available processes for producing sodium hydroxide needed in the mill. The first step of the evaluation shows that the two best options for increasing the production of sodium hydroxide for internal use in a mill are the conventional lime cycle process or direct causticization with titanates. The second step of the evaluation compares the lime cycle and the titanate process using first and second law analyses to determine the energy requirement and the exergy efficiencies of both processes. Such analyses show a higher energy requirement and a lower exergy efficiency in the titanate process than in the lime cycle process without any heat integration. However, the titanate process shows better performance in terms of energy requirement and exergy efficiency than the lime cycle, if heat is integrated into both processes. The titanate process requires, in the best case, only 80% of the energy required for a fully heat-integrated lime cycle process. Copyright © 2009 John Wiley & Sons, Ltd. [source] Elevation of cyclin D1 following trimethyltin induced hippocampal neurodegenerationJOURNAL OF NEUROCHEMISTRY, Issue 2002R. N. Wine Previous work has suggested that a major contributor to neuronal cell death is the aberrant induction of the cell cycle process, as indicated by an up-regulation of cyclin D. In order to examine the temporal and spatial relationship of cyclin D in a model of acute neurodegeneration, the hippocampal toxicant, trimethyltin (TMT; 2.0 mg/kg), was administered to 21-day old CD,1 male mice and the level and cellular localization of cyclin D1 examined. Within 24 h following TMT, dentate granule cells of the hippocampus showed evidence of neuronal necrosis resulting in severe cell loss over a 3-day period. The pyramidal cell layer was spared with only sparse punctate neuronal necrosis. Microglia response was seen at 72 h with ameboid microglia present in the dentate and ramified microglia present in the pyramidal cell layer, contributing to the elevation seen in TNF-alpha mRNA levels. A transient elevation was seen in mRNA levels for cyclin D1 over 48,72 h post-TMT. Immunohistochemistry demonstrated a transient increase in staining for cyclin D1 in CA1 pyramidal neurons as early as 24 h. Punctate staining occurred in neurons throughout the dentate at 48 h. BrdU positive cells were present along the inner blades of the dentate in control animals. Following TMT exposure, an increase was seen in both the number of neurons stained and a diffusion of the staining pattern into the full dentate region. Thus, in TMT-induced neurodegeneration, cyclin D1 is not expressed in the vulnerable neurons but rather in neurons spared from degeneration. This expression pattern appears to not be linked to an increase in the cellular processes for proliferation as the majority of BrdU positive cells were present in the region of neuronal damage. [source] A Novel Device for Single Particle Light Scattering Size Analysis and Concentration Measurement at High Pressures and TemperaturesPARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 2 2008Heinz Umhauer Abstract Based on the findings of previous work, a novel instrument was developed for the size analysis and concentration measurement of particles dispersed in gases at high temperatures (600,°C) and pressures (16 bar). The main motivation for the construction of this device was a measurement requirement at the conditions of a pressurized pulverized coal combustion (PPCC) test installation in Dorsten, Germany. The development of a high efficiency (>,50,%), coal based, combined cycle process, and specifically, the development of efficient gas cleaning technology for gas combustion under demanding conditions (1400,°C and 16 bar) was the main target. A suitable measurement technique was required for the determination of particle size and concentration downstream of the gas cleaning equipment, which is able to operate close to the given conditions. The performance of the novel device was tested in several measurement series with various monodisperse aerosols at ambient conditions as well as in high pressure, high temperature situations with very satisfactory results, i.e., the lower detection limit (50,% counting efficiency at ca. 0.3 ,m) and resolution of the novel device are comparable to state of the art instruments (of the same principle) intended for room temperature operation. [source] Hydrological regime analysis of the Selenge River basin, MongoliaHYDROLOGICAL PROCESSES, Issue 14 2003X. Ma Abstract Arid and semi-arid regions are very vulnerable to environmental changes. Climate change studies indicate that the environment in such areas will steadily deteriorate with global warming; inland lakes will shrink and desert areas will expand. Mongolia is a landlocked country in north-central Asia that contains a unique ecological system consisting of taiga, steppe, and desert from north to south. The Selenge River basin (280 000 km2) in northern Mongolia is a semi-arid region underlain by permafrost, between latitudes 46 and 52°N, and longitudes 96 and 109°E. The issue of sustainable development of the basin is very important owing to its limited natural resources, including fresh water, forest, and rangeland. To examine the water cycle processes in the basin, a hydrological analysis was carried out using a simple scheme for the interaction between the land surface and atmosphere (big-leaf model) coupled to a hydrological model for the period 1988,92 to estimate the hydrological regime of the basin. Annual precipitation in this period averaged 298 mm, ranging from 212 to 352 mm at a 1 ° × 1 ° resolution based on data from 10 gauges, and the estimated annual evapotranspiration averaged 241 mm, ranging between 153 and 300 mm. This indicates that evapotranspiration accounts for the overwhelming majority of the annual precipitation, averaging 81% and ranging between 64 and 96%. The annual potential evapotranspiration in the basin averaged 2009 mm; the ratio of evapotranspiration (actual to potential evapotranspiration) was 0·12 and the wetness index (annual precipitation to potential evapotranspiration) was 0·15. Copyright © 2003 John Wiley & Sons, Ltd. [source] Cell proliferation and cell cycle control: a mini reviewINTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 12 2004C.H. Golias Summary Tumourigenesis is the result of cell cycle disorganisation, leading to an uncontrolled cellular proliferation. Specific cellular processes-mechanisms that control cell cycle progression and checkpoint traversation through the intermitotic phases are deregulated. Normally, these events are highly conserved due to the existence of conservatory mechanisms and molecules such as cell cycle genes and their products: cyclins, cyclin dependent kinases (Cdks), Cdk inhibitors (CKI) and extra cellular factors (i.e. growth factors). Revolutionary techniques using laser cytometry and commercial software are available to quantify and evaluate cell cycle processes and cellular growth. S-phase fraction measurements, including ploidy values, using histograms and estimation of indices such as the mitotic index and tumour-doubling time indices, provide adequate information to the clinician to evaluate tumour aggressiveness, prognosis and the strategies for radiotherapy and chemotherapy in experimental researches. [source] |