Cycle Phase (cycle + phase)

Distribution by Scientific Domains

Kinds of Cycle Phase

  • cell cycle phase
  • menstrual cycle phase


  • Selected Abstracts


    INFLUENCE OF MENSTRUAL CYCLE PHASE ON SMOKING CESSATION TREATMENT OUTCOME: A HYPOTHESIS REGARDING THE DISCORDANT FINDINGS IN THE LITERATURE

    ADDICTION, Issue 11 2009
    TERESA R. FRANKLIN
    No abstract is available for this article. [source]


    Phosphorylation by COP9 Signalosome-Associated CK2 Promotes Degradation of p27 during the G1 Cell Cycle Phase

    ISRAEL JOURNAL OF CHEMISTRY, Issue 2 2006
    Xiaohua Huang
    The cell cycle regulator p27Kip1 (p27) is controlled by 26S proteasome-mediated proteolysis by two different pathways. From the S till the G2 phase of the cell cycle, degradation of p27 takes place in the nucleus and is initiated by CDK2-dependent phosphorylation of threonine 187 with subsequent ubiquitination by the SCFSkp2 ubiquitin ligase. During the G1 cell cycle phase (G1), p27 breakdown is cytosolic and is initiated by nuclear export with subsequent ubiquitination by a RING finger ligase called kip1 ubiquitination complex. Here we show that the COP9 signalosome (CSN) is a regulator of p27 proteolysis during G1. The CSN interacts with p27 and the CSN-associated kinase CK2 phosphorylates p27 at two regions. One is central to the protein (amino acids 101,113), and the other was mapped near to the C-terminus (amino acids 170,189). Elimination of the putative C-terminal phosphorylation sites stabilizes ectopic p27 towards proteasomal degradation and abolishes CSN,p27 binding. Inhibition of CSN-associated kinase activity by curcumin attenuates loss of p27 upon cell cycle re-entry. Similar but not additive effects of the phosphoinositol-3-kinase blocker LY 290042 may point to a common pathway of CSN-associated CK2 and protein kinase B/Akt (Akt) in regulating p27 abundance. Akt is found in Flag pulldowns of lysates obtained from cells permanently expressing Flag-tagged CSN2, indicating that Akt is a novel kinase associated with the CSN. Thus, the CSN seems to regulate p27 proteolysis at G1 downstream of Ras-mediated signal pathways. [source]


    ORIGINAL ARTICLE: The Characterization of the Subpopulation of Suppressive B7H4+ Macrophages and the Subpopulation of CD25+ CD4+ and FOXP3+ Regulatory T-cells in Decidua during the Secretory Cycle Phase, Arias Stella Reaction, and Spontaneous Abortion , A Preliminary Report

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2009
    Lukasz Wicherek
    Problem, The presence of immunosuppressive cells within the endometrium and decidua is crucial for establishing maternal immune tolerance against fetal antigens. We decided to evaluate the subpopulations of Treg cells and B7H4 macrophages in eutopic endometrium typified by Arias Stella reaction during the development of Fallopian tube pregnancy as well as in decidua at the time of spontaneous abortion (SA), and to compare these findings to those observed in the endometrium during the secretory cycle phase of healthy women. Method of study, The decidual tissue samples evaluated in our study were obtained from 26 women who underwent curettage as a result of the following circumstances: five of the women because of a laparoscopic procedure necessitated by Fallopian tube pregnancy, and 11 of them because of SA. The control group consisted of 10 patients on whom curettage was preformed as an additional procedure during laparoscopic myomectomy. The presence of regulatory T-cells and B7H4-positive macrophages in the samples was analysed by fluorescence-activated cell sorter (FACScan). Results, Both the percentages of FOXP3+ cells in the subpopulation of CD25+ CD4+ T lymphocytes and the percentage of B7H4-positive cells in the macrophage subpopulation found in the deciduae of patients suffering SA were higher than those found in eutopic endometrium with Arias Stella reaction. No such differences in the percentages of these cells were observed when the tissue samples from patients with SA were compared with those from the control group. The percentage of B7H4-positive macrophages, however, was found to be significantly lower in endometrium with Arias Stella reaction in comparison to that observed in secretory endometrium. Conclusion, The alterations in both the Treg cell and suppressive B7H4+ macrophage subpopulations would seem to be related to the suppression of maternal immune cells in the endometrium at the beginning of decidualization. [source]


    Single-cell gene profiling of planarian stem cells using fluorescent activated cell sorting and its "index sorting" function for stem cell research

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2010
    Tetsutaro Hayashi
    To achieve an integrated understanding of the stem cell system of planarians at both the cellular and molecular levels, we developed a new method by combining "fluorescent activated cell sorting (FACS) index sorting" analysis and single-cell reverse transcription,polymerase chain reaction (RT,PCR) to detect the gene expression and cell cycle state of stem cells simultaneously. Single cells were collected using FACS, and cDNAs of each cell were used for semi-quantitative RT,PCR. The results were plotted on the FACS sorting profile using the "index sorting" function, which enabled us to analyze the gene expression in combination with cell biological data (such as cell cycle phase) for each cell. Here we investigated the adult stem cells of planarians using this method and obtained findings suggesting that the stem cells might undergo commitment during S to G2/M phase. This method could be a powerful and straightforward tool for examining the stem cell biology of not only planarians but also other organisms, including vertebrates. [source]


    Human sex differences in d -amphetamine self-administration

    ADDICTION, Issue 4 2010
    Andrea R. Vansickel
    ABSTRACT Women and men may respond differently to the effects of stimulants such as amphetamine and cocaine. Aim In order to assess potential sex differences in the reinforcing effects of d -amphetamine, a retrospective-analysis was conducted on data collected from three studies that employed similar d -amphetamine self-administration procedures and used identical subject-rated drug-effect measures. Methods Data from 10 women and 15 men were included in the analysis. In all studies, participants sampled placebo, low (8,10 mg) or high (16,20 mg) dose oral d -amphetamine. Following sampling sessions, participants worked for capsules containing one eighth of the previously sampled dose on a modified progressive-ratio schedule of reinforcement. We hypothesized that women and men would be differentially sensitive to the reinforcing effects of d -amphetamine. A two-way mixed-model analysis of variance (sex and dose) and planned comparisons were used in the statistical analyses. Results The low dose of d -amphetamine functioned as a reinforcer in women, but not men, whereas the high dose of d -amphetamine functioned as a reinforcer in men, but not women. Men self-administered significantly more capsules under the high dose condition than women. Conclusion The results of this study suggest that men are more sensitive to the reinforcing effects of a high dose of d -amphetamine than women. Future research is needed that determines prospectively the reinforcing effects of weight-adjusted doses of d -amphetamine in women and men while controlling for menstrual cycle phase. [source]


    Variations in carotid arterial compliance during the menstrual cycle in young women

    EXPERIMENTAL PHYSIOLOGY, Issue 2 2006
    Koichiro Hayashi
    The effect of menstrual cycle phase on arterial elasticity is controversial. In 10 healthy women (20.6 ± 1.5 years old, mean ±s.d.), we investigated the variations in central and peripheral arterial elasticity, blood pressure (carotid and brachial), carotid intima,media thickness (IMT), and serum oestradiol and progesterone concentrations at five points in the menstrual cycle (menstrual, M; follicular, F; ovulatory, O; early luteal, EL; and late luteal, LL). Carotid arterial compliance (simultaneous ultrasound and applanation tonometry) varied cyclically, with significant increases from the values seen in M (0.164 ± 0.036 mm2 mmHg,1) and F (0.171 ± 0.029 mm2 mmHg,1) to that seen in the O phase (0.184 ± 0.029 mm2 mmHg,1). Sharp declines were observed in the EL (0.150 ± 0.033 mm2 mmHg,1) and LL phases (0.147 ± 0.026 mm2 mmHg,1; F= 8.51, P < 0.05). Pulse wave velocity in the leg (i.e. peripheral arterial stiffness) did not exhibit any significant changes. Fluctuations in carotid arterial elasticity correlated with the balance between oestradiol and progesterone concentrations. No significant changes were found in carotid and brachial blood pressures, carotid artery lumen diameter, or IMT throughout the menstrual cycle. These data provide evidence that the elastic properties of central, but not peripheral, arteries fluctuate significantly with the phases of the menstrual cycle. [source]


    The annual cycle of heavy precipitation across the United Kingdom: a model based on extreme value statistics

    INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 12 2009
    D. Maraun
    Abstract The annual cycle of extreme 1-day precipitation events across the UK is investigated by developing a statistical model and fitting it to data from 689 rain gauges. A generalized extreme-value distribution (GEV) is fit to the time series of monthly maxima, across all months of the year simultaneously, by approximating the annual cycles of the location and scale parameters by harmonic functions, while keeping the shape parameter constant throughout the year. We average the shape parameter of neighbouring rain gauges to decrease parameter uncertainties, and also interpolate values of all model parameters to give complete coverage of the UK. The model reveals distinct spatial patterns for the estimated parameters. The annual mean of the location and scale parameter is highly correlated with orography. The annual cycle of the location parameter is strong in the northwest UK (peaking in late autumn or winter) and in East Anglia (where it peaks in late summer), and low in the Midlands. The annual cycle of the scale parameter exhibits a similar pattern with strongest amplitudes in East Anglia. The spatial patterns of the annual cycle phase suggest that they are linked to the dominance of frontal precipitation for generating extreme precipitation in the west and convective precipitation in the southeast of the UK. The shape parameter shows a gradient from positive values in the east to negative values in some areas of the west. We also estimate 10-year and 100-year return levels at each rain gauge, and interpolated across the UK. Copyright © 2008 Royal Meteorological Society [source]


    Phosphorylation by COP9 Signalosome-Associated CK2 Promotes Degradation of p27 during the G1 Cell Cycle Phase

    ISRAEL JOURNAL OF CHEMISTRY, Issue 2 2006
    Xiaohua Huang
    The cell cycle regulator p27Kip1 (p27) is controlled by 26S proteasome-mediated proteolysis by two different pathways. From the S till the G2 phase of the cell cycle, degradation of p27 takes place in the nucleus and is initiated by CDK2-dependent phosphorylation of threonine 187 with subsequent ubiquitination by the SCFSkp2 ubiquitin ligase. During the G1 cell cycle phase (G1), p27 breakdown is cytosolic and is initiated by nuclear export with subsequent ubiquitination by a RING finger ligase called kip1 ubiquitination complex. Here we show that the COP9 signalosome (CSN) is a regulator of p27 proteolysis during G1. The CSN interacts with p27 and the CSN-associated kinase CK2 phosphorylates p27 at two regions. One is central to the protein (amino acids 101,113), and the other was mapped near to the C-terminus (amino acids 170,189). Elimination of the putative C-terminal phosphorylation sites stabilizes ectopic p27 towards proteasomal degradation and abolishes CSN,p27 binding. Inhibition of CSN-associated kinase activity by curcumin attenuates loss of p27 upon cell cycle re-entry. Similar but not additive effects of the phosphoinositol-3-kinase blocker LY 290042 may point to a common pathway of CSN-associated CK2 and protein kinase B/Akt (Akt) in regulating p27 abundance. Akt is found in Flag pulldowns of lysates obtained from cells permanently expressing Flag-tagged CSN2, indicating that Akt is a novel kinase associated with the CSN. Thus, the CSN seems to regulate p27 proteolysis at G1 downstream of Ras-mediated signal pathways. [source]


    Overexpression of GSTA2 protects against cell cycle arrest and apoptosis induced by the DNA inter-strand crosslinking nitrogen mustard, mechlorethamine

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2005
    Jingping Xie
    Abstract The effectiveness of bifunctional alkylating nitrogen mustard compounds in chemotherapy is related to their ability to form DNA inter-strand crosslinks. Patients exposed to DNA inter-strand crosslinking (ICL) agents subsequently experience an elevated incidence of myelodysplastic syndromes (MDS) and MDS related acute myeloid leukemia. Fanconi's anemia (FA) patients are deficient in the repair of crosslink DNA damage and they experience a high incidence of MDS. These observations indicate that hematopoietic cells are specific target for the transforming effects of DNA crosslinking damage. Changes in transcript levels were characterized in human hematopoietic cells occurring in response to the nitrogen mustard, mechlorethamine (HN2), but not in response to monofunctional analogs. Only modest changes in a few gene transcripts were detected in HL60 cells exposed to levels of HN2 tittered to maximal dose that caused growth suppression with minimal cell death and allowed eventual resumption of normal cell growth. Under conditions of transient growth suppression, a subset of glutathione-S-transferase (GST) isoenzyme genes was consistently upregulated three to fourfold by HN2, but not by monofunctional analogs. Subsequent efforts to confirm the changes detected by microarray analyses revealed an unexpected dependence on treatment conditions. The GST alpha class A2 subfamily member transcripts were upregulated 24 h after a 1 h exposure to HN2 that caused an extensive, but transient block in late S/G2 cell cycle phase, but were minimally altered with continuous exposure. The 1-h exposure to HN2 caused a transient late S/G2 cell cycle arrest in both the HL-60 cell line and the Colo 320HSR human colon cancer cell line. Overexpression of GSTA2 by transient transfection protected Colo 320HSR cells against both cycle arrest and apoptosis following exposure to HN2. Overexpression of GSTA2 in Colo 320HSR cells induced after exposure to HN2 did not alter cycle arrest or apoptosis. The results indicate that human GSTA2 facilitates the protection of cells from HN2 damage and not repair. Our results are consistent with the possibility that GSTA2 polymorphisms, variable isoenzyme expression, and variable induced expression may be factors in the pathogenesis of MDS. © 2005 Wiley-Liss, Inc. [source]


    Ectodomain shedding of membrane-anchored heparin-binding EGF like growth factor and subcellular localization of the C-terminal fragment in the cell cycle

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2005
    Fujio Toki
    Heparin-binding EGF-like growth factor (HB-EGF) is initially synthesized as a type I transmembrane protein (proHB-EGF). The proHB-EGF is shed by specific metalloproteases, releasing the N-terminal fragment into the extracellular space as a soluble growth factor (HB-EGF) and the C-terminal fragment (HB-EGF-C) into the intracellular space, where it prevents transcriptional repression by the promyelocytic leukemia zinc finger protein (PLZF). The goal of the present study was to characterize regulation of proHB-EGF shedding and study its temporal variations in HB-EGF-C localization throughout the cell cycle. Quantitative combination analyses of cell surface proHB-EGF and HB-EGF in conditioned medium showed that proHB-EGF shedding occurred during the G1 cell cycle phase. Laser scanning cytometry (LSC) revealed that HB-EGF-C was internalized into the cytoplasm during the late G1 phase and accumulated in the nucleus beginning in the S phase. Subsequent nuclear export of PLZF occurred during the late S phase. Further, HB-EGF-C was localized around the centrosome following breakdown of the nuclear envelope and was localized to the interzonal space with chromosome segregation in the late M phase. Temporal variations in HB-EGF localization throughout the cell cycle were also characterized by time-lapse imaging of cells expressing YFP-tagged proHB-EGF, and these results were consistent with those obtained in cytometry studies. These results indicate that proHB-EGF shedding and subsequent HB-EGF-C signaling are related with progression of the cell cycle and may provide a clue to understand the unique biological significance of non-receptor-mediated signaling of proHB-EGF in cell growth. © 2004 Wiley-Liss, Inc. [source]


    Conflict resolution in women is related to trait aggression and menstrual cycle phase

    AGGRESSIVE BEHAVIOR, Issue 3 2003
    Alyson J. Bond
    Abstract Twenty-four women with a diagnosis of premenstrual dysphoric disorder (PMDD) and 18 controls took part in a study of patterns of female aggression. They completed a version of the Conflict Tactics Scale for a premenstrual and a follicular phase of their menstrual cycle and for the past year. The Life History of Aggression was completed during a clinician interview. The women used more aggressive tactics to solve conflicts in the premenstrual than in the follicular phase, but the difference was only significant for the PMDD group. During the past year, reasoning was the most common strategy used by women to resolve conflicts, but verbal aggression was also prevalent. Although physical violence was less common, the prevalence of any act of violence was 33% in the controls and 62% in the clinical group. Women with PMDD used both verbal and physical aggression more frequently than the controls and had a higher lifetime history of aggression. Aggression by women toward partners was associated with a general tendency to act aggressively. Aggr. Behav. 29:228,238, 2003. © 2003 Wiley-Liss, Inc. [source]


    Temporary hair removal by low fluence photoepilation: Histological study on biopsies and cultured human hair follicles

    LASERS IN SURGERY AND MEDICINE, Issue 8 2008
    Guido F. Roosen MSc
    Abstract Background and Objectives We have recently shown that repeated low fluence photoepilation (LFP) with intense pulsed light (IPL) leads to effective hair removal, which is fully reversible. Contrary to permanent hair removal treatments, LFP does not induce severe damage to the hair follicle. The purpose of the current study is to investigate the impact of LFP on the structure and the physiology of the hair follicle. Study Design/Materials and Methods Single pulses of IPL with a fluence of 9 J/cm2 and duration of 15 milliseconds were applied to one lower leg of 12 female subjects, followed by taking a single biopsy per person, either immediately, or after 3 or 7 days. Additionally, we present a novel approach to examine the effects of LFP, in which ex vivo hairy human scalp skin was exposed to IPL pulses with the same parameters as above, followed by isolation and culturing of the hair follicles over several days. Samples were examined histologically and morphologically. Results The majority of the cultured follicles that had been exposed to LFP treatment showed a marked treatment effect. The melanin containing part of the hair follicle bulb was the target and a catagen-like transformation was observed demonstrating that hair formation had ceased. The other follicles that had been exposed to LFP showed a less strong or no response. The skin biopsies also revealed that the melanin-rich region of the hair follicle bulb matrix was targeted; other parts of the follicle and the skin remained unaffected. Catagen/telogen hair follicles were visible with unusual melanin clumping, indicating this cycle phase was induced by the IPL treatment. Conclusions Low fluence photoepilation targets the pigmented matrix area of the anagen hair follicle bulb, causing a highly localized but mild trauma that interrupts the hair cycle, induces a catagen-like state and eventually leads to temporary loss of the hair. Lesers Surg. Med. 40:520,528, 2008. © 2008 Wiley-Liss, Inc. [source]


    Immunohistochemical estimation of cell cycle entry and phase distribution in astrocytomas: applications in diagnostic neuropathology

    NEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 5 2005
    Ian S. Scott
    An immunohistochemical method for assessing cell cycle phase distribution in neurosurgical biopsies would enable such data to be incorporated into diagnostic algorithms for the estimation of prognosis and response to adjuvant chemotherapy in glial neoplasms, without the requirement for flow cytometric analysis. Paraffin-embedded sections of intracerebral gliomas (n = 48), consisting of diffuse astrocytoma (n = 9), anaplastic astrocytoma (n = 8) and glioblastoma (n = 31), were analysed by immunohistochemistry using markers of cell cycle entry, Mcm-2 and Ki67, and putative markers of cell cycle phase, cyclins D1 (G1-phase), cyclin A (S-phase), cyclin B1 (G2-phase) and phosphohistone H3 (Mitosis). Double labelling confocal microscopy confirmed that the phase markers were infrequently coexpressed. Cell cycle estimations by immunohistochemistry were corroborated by flow cytometric analysis. There was a significant increase in Mcm-2 (P < 0.0001), Ki67 (P < 0.0001), cyclin A (P < 0.0001) and cyclin B1 (P = 0.002) expression with increasing grade from diffuse astrocytoma through anaplastic astrocytoma to glioblastoma, suggesting that any of these four markers has potential as a marker of tumour grade. In a subset of glioblastomas (n = 16) for which accurate clinical follow-up data were available, there was a suggestion that the cyclin A:Mcm-2 labelling fraction might predict a relatively favourable response to radical radiotherapy. These provisional findings, however, require confirmation by a larger study. We conclude that it is feasible to obtain detailed cell cycle data by immunohistochemical analysis of tissue biopsies. Such information may facilitate tumour grading and may enable information of prognostic value to be obtained in the routine diagnostic laboratory. [source]


    The impact of menstrual cycle phase on cardiac autonomic regulation

    PSYCHOPHYSIOLOGY, Issue 4 2009
    Paula S. Mckinley
    Abstract This study investigated menstrual cycle phase differences in heart rate (HR) and RR interval variability (RRV) in 49 healthy, premenopausal, eumenorrheic women (age 30.2±6.2 years). HR and RRV were computed from ambulatory 24-h electrocardiogram, collected for up to 6 days, with at least 1 day each during early to midfollicular and midluteal menstrual phases. Phase effects on HR and RRV were assessed using linear mixed effects models with a random intercept to account for the correlation of observations within each subject as well as intrasubject variation. During follicular phase monitoring, women had significantly lower average HR (,2.33 bpm), and higher standard deviation, the root mean squared successive difference, and high frequency (0.04,0.15 Hz) and low frequency (0.15,0.40 Hz) RRV than during the luteal phase. These results provide strong support for the influence of menstrual phase on cardiac autonomic regulation in premenopausal women. [source]


    Attenuation of positive and negative affect in men and women at increased risk for hypertension: A function of endogenous barostimulation?

    PSYCHOPHYSIOLOGY, Issue 1 2009
    Daniel Z. Wilkinson
    Abstract We hypothesized that activation of endogenous baroreflexes would be associated with reduced responsivity to affective stimuli and that this effect would be enhanced in individuals at risk for hypertension. Images from the International Affective Picture System were presented during systolic and diastolic phases of the cardiac cycle. Affective responsivity was measured using electromyographic activity, skin conductance, and ratings of arousal and valence. Compared to offspring of normotensives, individuals with a parental history of hypertension showed reduced responsivity to both positive and negative affective stimuli; however, responsivity did not differ as a function of cardiac cycle phase. Although these findings do not support a barostimulation mechanism of affective dampening, it is premature to discount the baroreflex inhibition hypothesis given the limited affective reactions elicited by visual stimuli presented in the laboratory. [source]


    Relationship between sexual interactions and the timing of the fertile phase in captive female Japanese macaques (Macaca fuscata)

    AMERICAN JOURNAL OF PRIMATOLOGY, Issue 10 2009
    Cécile Garcia
    Abstract Japanese macaques live in multi-male/multi-female social groups in which competition between males, female mate choice, and alternative male mating strategies are important determinants of mating and reproductive success. However, the extent to which adult males rely on female behavior to make their mating decisions as well as the effect of social rank on mating success are not clear as results are inconclusive, varying from study to study. In this study, we combined behavioral and endocrine data of 14 female Japanese macaques to examine the relationship between ovarian cycle phase and frequency of sexual behaviors, and to investigate how social rank influences sexual behavior in this species. We found that there was no increase in female proceptive behaviors during the fertile phase of the ovarian cycle, suggesting that female behaviors did not clearly signal the probability of conception. In spite of that, the frequencies of ejaculatory copulations were highest during this phase, indicating that the attractivity of females increased significantly during the period with higher probability of conception. Males, and especially the highest ranking male, were able to discriminate females nearing ovulation and to concentrate their mating effort, implying that the timing of ovulation was not concealed from them. The , male seemed able to monopolize most female matings, which is probably due in part to the low number of females simultaneously ovulating and to the limited number of inconspicuous places that the lower ranking males have to mate with females and avoid , male aggression. All together, these results suggest that different males may have access to different signals of ovulation and/or are differentially restrained as to how they can act on that information. The exact nature of the estrogen-related cues males use to recognize female reproductive status, and to what extent males use them warrants further investigation. Am. J. Primatol. 71:868,879, 2009. © 2009 Wiley-Liss, Inc. [source]


    ORIGINAL ARTICLE: The Characterization of the Subpopulation of Suppressive B7H4+ Macrophages and the Subpopulation of CD25+ CD4+ and FOXP3+ Regulatory T-cells in Decidua during the Secretory Cycle Phase, Arias Stella Reaction, and Spontaneous Abortion , A Preliminary Report

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2009
    Lukasz Wicherek
    Problem, The presence of immunosuppressive cells within the endometrium and decidua is crucial for establishing maternal immune tolerance against fetal antigens. We decided to evaluate the subpopulations of Treg cells and B7H4 macrophages in eutopic endometrium typified by Arias Stella reaction during the development of Fallopian tube pregnancy as well as in decidua at the time of spontaneous abortion (SA), and to compare these findings to those observed in the endometrium during the secretory cycle phase of healthy women. Method of study, The decidual tissue samples evaluated in our study were obtained from 26 women who underwent curettage as a result of the following circumstances: five of the women because of a laparoscopic procedure necessitated by Fallopian tube pregnancy, and 11 of them because of SA. The control group consisted of 10 patients on whom curettage was preformed as an additional procedure during laparoscopic myomectomy. The presence of regulatory T-cells and B7H4-positive macrophages in the samples was analysed by fluorescence-activated cell sorter (FACScan). Results, Both the percentages of FOXP3+ cells in the subpopulation of CD25+ CD4+ T lymphocytes and the percentage of B7H4-positive cells in the macrophage subpopulation found in the deciduae of patients suffering SA were higher than those found in eutopic endometrium with Arias Stella reaction. No such differences in the percentages of these cells were observed when the tissue samples from patients with SA were compared with those from the control group. The percentage of B7H4-positive macrophages, however, was found to be significantly lower in endometrium with Arias Stella reaction in comparison to that observed in secretory endometrium. Conclusion, The alterations in both the Treg cell and suppressive B7H4+ macrophage subpopulations would seem to be related to the suppression of maternal immune cells in the endometrium at the beginning of decidualization. [source]


    293 cell cycle synchronisation adenovirus vector production

    BIOTECHNOLOGY PROGRESS, Issue 1 2009
    Tiago B. Ferreira
    Abstract As the market requirements for adenovirus vectors (AdV) increase, the maximisation of the virus titer per culture volume per unit time is a key requirement. However, despite the fact that 293 cells can grow up to 8 × 106 cell/mL in simple batch mode operations, for optimal AdV infection a maximum cell density of 1 × 106 cell/mL at infection time has usually been utilized due to the so called "cell density effect". In addition, AdV titer appears to be dependent upon cell cycle phase at the time of infection. To evaluate the dependence of AdV production upon cell cycle phase, 293 cells were chemically synchronised at each phase of the cell cycle; a 2.6-fold increase on AdV cell specific titer was obtained when the percentage of cells at the S phase of the cell cycle was increased from 36 to 47%; a mathematical equation was used to relate AdV cell specific productivities with cell synchronisation at the S phase using this data. To avoid the use of chemical inhibitors, a temperature shift strategy was also used for synchronisation at the S phase. S phase synchronisation was obtained by decreasing the culture temperature to 31°C during 67 h and restoring it to 37°C during 72 h. By using this strategy we were able to synchronise 57% of the population in the S phase of the cell cycle obtaining an increase of 7.3-fold on AdV cell specific titer after infection. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


    Heat shock-induced arrests in different cell cycle phases of rat C6-glioma cells are attenuated in heat shock-primed thermotolerant cells

    CELL PROLIFERATION, Issue 3 2000
    N. M. Kühl
    The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development. [source]


    Cardiovascular functioning during the menstrual cycle

    CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 6 2000
    Victoria Hall Moran
    Variations in cardiovascular functioning during the ,normal' menstrual cycle have been little researched. Resting-blood pressures, resting-heart rate, rate-pressure product (RPP) and a derived index of fitness (Schneider Index) were monitored throughout natural, hormonally defined menstrual cycles. Volunteers were 26 women (20,48 years) who had regular (25,35 days) cycles. Their blood pressures and heart rate (at rest and according to Schneider's protocol) were measured at the same time daily (Monday,Friday) for 5 weeks. Daily, early morning-urine samples were assayed for sex hormones enabling accurate definition of cycle phase for each woman. Resting systolic-blood pressure was significantly higher in the ovulatory phase (P<0·05) than in the follicular or luteal phases, but resting-diastolic pressures did not differ significantly between phases. Resting-heart rate was significantly higher in both ovulatory (P<0·01) and luteal (P<0·01) phases than in the menstrual and follicular phases. The Schneider Index was higher during the follicular phase than during the ovulatory (P<0·005) or luteal (P<0·01) phases, the RPP was higher during the ovulatory phase than during the bleeding (P<0·05) and follicular (P<0·005) phases. These findings provide a pattern of menstrual cycle-related variation in cardiovascular functioning that can be related to established actions of the ovarian steroids. [source]


    Expression patterns and cell cycle profiles of PCNA, MCM6, cyclin D1, cyclin A2, cyclin B1, and phosphorylated histone H3 in the developing mouse retina

    DEVELOPMENTAL DYNAMICS, Issue 3 2008
    Kirston M. Barton
    Abstract A challenge in studying organogenesis is the ability to identify progenitor cell populations. To address this problem, we characterized the expression patterns of cell cycle proteins during mouse retinal development and used flow cytometry to determine the expression profiles in the cell cycle. We found that MCM6 and PCNA are expressed in essentially all retinal progenitor cells throughout the proliferative period and these proteins are readily detectable in all cell cycle phases. Furthermore, their expression levels are downregulated as cells exit the cell cycle and differentiate. We also analyzed the expression of Cyclins D1, A2, and B1, and phosphorylated Histone H3 and found unexpected expression patterns and cell cycle profiles. The combined utilization of the markers tested and the use of flow cytometry should further facilitate the study of stem and progenitor cell behavior during development and in adult tissues. Developmental Dynamics 237:672,682, 2008. © 2008 Wiley-Liss, Inc. [source]


    13C-Labeled metabolic flux analysis of a fed-batch culture of elutriated Saccharomyces cerevisiae

    FEMS YEAST RESEARCH, Issue 4 2007
    Roeland Costenoble
    Abstract This study addresses the question of whether observable changes in fluxes in the primary carbon metabolism of Saccharomyces cerevisiae occur between the different phases of the cell division cycle. To detect such changes by metabolic flux analysis, a 13C-labeling experiment was performed with a fed-batch culture inoculated with a partially synchronized cell population obtained through centrifugal elutriation. Such a culture exhibits dynamic changes in the fractions of cells in different cell cycle phases over time. The mass isotopomer distributions of free intracellular metabolites in central carbon metabolism were measured by liquid chromatography,mass spectrometry. For four time points during the culture, these distributions were used to obtain the best estimates for the metabolic fluxes. The obtained flux fits suggested that the optimally fitted split ratio for the pentose phosphate pathway changed by almost a factor of 2 up and down around a value of 0.27 during the experiment. Statistical analysis revealed that some of the fitted flux distributions for different time points were significantly different from each other, indicating that cell cycle-dependent variations in cytosolic metabolic fluxes indeed occurred. [source]


    Increased Dopamine Is Associated With the cGMP and Homocysteine Pathway in Female Migraineurs

    HEADACHE, Issue 1 2010
    Hans-Jürgen Gruber PhD
    (Headache 2010;50:109-116) Background., The group of catecholamines, which include dopamine, adrenaline, and noradrenaline, are neurotransmitters which have been considered to play a role in the pathogenesis of migraine. However, the impact of catecholamines, especially dopamine on migraine as well as the exact mechanisms is not clear to date as previous studies have yielded in part conflicting results. Objective., This study aimed to produce a comprehensive examination of dopamine in migraineurs. Methods., Catecholamines and various parameters of the homocysteine, folate, and iron metabolism as well as cyclic guanosine monophosphate (cGMP) and inflammatory markers were determined in 135 subjects. Results., We found increased dopamine levels in the headache free period in female migraineurs but not in male patients. Increased dopamine is associated with a 3.30-fold higher risk for migraine in women. We found no significant effects of aura symptoms or menstrual cycle phases on dopamine levels. Dopamine is strongly correlated with cGMP and the homocysteine,folate pathway. Conclusion., We show here that female migraineurs exhibit increased dopamine levels in the headache free period which are associated with a higher risk for migraine. [source]


    Coumarin A/AA induces apoptosis-like cell death in HeLa cells mediated by the release of apoptosis-inducing factor

    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 4 2009
    Carolina Álvarez-Delgado
    Abstract It has been demonstrated that naturally occurring coumarins have strong biological activity against many cancer cell lines. In this study, we assessed the cytotoxicity induced by the naturally isolated coumarin A/AA in different cancer cell lines (HeLa, Calo, SW480, and SW620) and in normal peripheral-blood mononuclear cells (PBMCs). Cytotoxicity was evaluated using the MTT assay. The results demonstrate that coumarin A/AA was cytotoxic in the four cancer cell lines tested and importantly was significantly less toxic in PBMCs isolated from healthy donors. The most sensitive cancer cell line to coumarin A/AA treatment was Hela. Thus, the programmed cell death (PCD) mechanism induced by this coumarin was further studied in this cell line. DNA fragmentation, histomorphology, cell cycle phases, and subcellular distribution of PCD proteins were assessed. The results demonstrated that DNA fragmentation, but not significant cell cycle disruptions, was part of the PCD activated by coumarin A/AA. Interestingly, it was found that apoptosis-inducing factor (AIF), a proapoptotic protein of the mitochondrial intermembrane space, was released to the cytoplasm in treated cells as detected by the western blot analysis in subcellular fractions. Nevertheless, the active form of caspase-3 was not detected. The overall results indicate that coumarin A/AA induces a caspase-independent apoptotic-like cell death program in HeLa cells, mediated by the early release of AIF and suggest that this compound may be helpful in clinical oncology. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:263,272, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20288 [source]


    ORIGINAL ARTICLE: Differences in the Soluble HLA-G Blood Serum Concentration Levels in Patients with Ovarian Cancer and Ovarian and Deep Endometriosis

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 5 2010
    Pawel Mach
    Citation Mach P, Blecharz P, Basta P, Marianowski P, Skret-Magierlo J, Kojs Z, Grabiec M, Wicherek L. Differences in the soluble HLA-G blood serum concentration levels in patients with ovarian cancer and ovarian and deep endometriosis. Am J Reprod Immunol 2010 Problem, The relationship between endometriosis and cancer has been widely discussed in the literature but is still not well clarified. Perhaps significantly, soluble human leukocyte antigen-G (sHLA-G) has been identified in the microenvironment of both ovarian cancer and endometrioma. The aim of this study has been to evaluate the sHLA-G levels in the blood sera of women with deep endometriosis and ovarian endometrioma over the course of the menstrual cycle and to compare to the levels of sHLA-G in the blood sera of women with ovarian cancer. Method of study, In our study, we examined the blood sera obtained from 123 patients operated on because of ovarian cancer (65 cases), ovarian endometrioma (30 cases), and deep endometriosis (28 cases). We decided to compare the levels of sHLA-G in patients with endometriosis to those found in patients with ovarian cancer with respect to the menstrual cycle phases. The sHLA-G concentration level was measured by enzyme-linked immunosorbent assay kit. Results, The level of sHLA-G concentration in the blood serum of patients with deep endometriosis fluctuates over the course of the menstrual cycle, and during the proliferative and secretory phases, it remains at a high level comparable to that found in patients with ovarian cancer. By contrast, the level of sHLA-G concentration in the blood serum of patients with ovarian endometrioma fluctuates minimally over the course of the different menstrual cycle phases and, as in patients with ovarian cancer, it remains at high level during the proliferative phase. Conclusion, sHLA-G blood serum concentration levels would seem to provide important information regarding the degree of immune system regulation disturbance in both ectopic endometrial cells and the cancer cell suppressive microenvironment. [source]


    GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer

    CANCER SCIENCE, Issue 10 2007
    Mariko Noguchi
    Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC50 values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R2 = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors. (Cancer Sci 2007; 98: 1625,1632) [source]


    Heat shock-induced arrests in different cell cycle phases of rat C6-glioma cells are attenuated in heat shock-primed thermotolerant cells

    CELL PROLIFERATION, Issue 3 2000
    N. M. Kühl
    The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development. [source]