Cycle Number (cycle + number)

Distribution by Scientific Domains


Selected Abstracts


Long-Cycle Electrochemical Behavior of Multiwall Carbon Nanotubes Synthesized on Stainless Steel in Li Ion Batteries

ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009
Charan Masarapu
Abstract Carbon nanotubes (CNTs) are considered to be excellent candidates for high performance electrode materials in Li ion batteries. The nanometer-sized pore structures of CNTs can provide the hosting sites for storing large numbers of Li ions. A short diffusion distance for the Li ions may bring about a high discharge rate. The long-cycle performance of aligned multiwalled carbon nanotubes (MWNTs) directly synthesized on stainless-steel foil as an anode material in lithium battery is demonstrated. An increase in the specific capacity with an increase in the cycle number is observed. Starting at a value of 132,mA hg,1 in the first cycle at a current rate of 1,C, the specific capacity increased about 250% to a value of 460,mA hg,1 after 1,200 cycles. This is an unusual but a welcoming behavior for battery applications. It is found that the morphology of the MWNTs with structural and surface defects and the stainless-steel substrate play an important role in enhancing the capacity during the cycling process. [source]


Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2002
Q. Xiang
Abstract Polypropylene (PP), as a commodity recyclable thermoplastic, was studied in this research to evaluate the potential environmental impact resulting from volatile organic compounds (VOCs) emitted during multiple melt reprocessing. Unstabilized PP (U-PP) and stabilized PP (S-PP) resins, simulating recycled materials prone to degradation, were evaluated for total VOC emissions generated during multiple melt reprocessing by injection molding and extrusion, respectively. Results show that the maximum amount of total VOCs from each cycle (up to six cycles for extrusion and up to ten for injection molding) did not significantly change, while the cumulative VOCs increased with increasing processing cycle for both materials. A good correlation between cumulative VOC increases and melt flow index increase for the U-PP and weight-average molecular weight Mw decrease for the S-PP were obtained. Reprocessing in all cases was accompanied by decreases in Mw and melt viscosity as a result of thermooxidative degradation. FTIR data considering increases in carbonyl content and degree of unsaturation suggest that at equivalent cycle numbers, degradation appears to be more severe for the extruded material in spite of the longer oxidative induction time of the "as received" pellets used in extrusion. The onset and type of structural changes are shown to depend on cycle number and reprocessing method. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 235,242, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10027 [source]


Using quantitative real-time PCR to detect salmonid prey in scats of grey Halichoerus grypus and harbour Phoca vitulina seals in Scotland , an experimental and field study

JOURNAL OF APPLIED ECOLOGY, Issue 2 2008
I. Matejusová
Summary 1There is considerable debate over the impact of seal predation on salmonid populations in both the Atlantic and Pacific oceans. Conventional hard-part analysis of scats has suggested that salmonids represent a minor component of the diet of grey seals (Halichoerus grypus) and harbour seals (Phoca vitulina) in the UK. However, it is unclear whether this is an accurate reflection of the diet or due to methodological problems. To investigate this issue, we applied quantitative PCR (qPCR) to examine the presence of salmonids in the diet of seals in the Moray Firth, UK, during the summers of 2003 and 2005. 2Two qPCR assays were designed to detect Atlantic salmon Salmo salar and sea trout Salmo trutta DNA in field samples and experimentally spiked scats. The proportion of scats sampled in the field that were positive for salmonid DNA was low (ª10%). However, the DNA technique consistently resulted in more positive scats than when hard-part analysis was used. 3An experimental study using spiked scat material revealed a highly significant negative relationship between Ct values obtained from the Atlantic salmon qPCR assay and the proportion of Atlantic salmon material added to scats. The Ct value denotes the cycle number at which the increasing fluorescence signal of target DNA crosses a threshold value. Ct values from field-collected seal scats suggested they contained a very low concentration of salmonid remains (1,5%) based on an approximate calibration curve constructed from the experimental data. 4Synthesis and applications. The qPCR assay approach was shown to be highly efficient and consistent in detection of salmonids from seal scats, and to be more sensitive than conventional hard-parts analysis. Nevertheless, our results confirm previous studies indicating that salmonids are not common prey for seals in these Scottish estuaries. These studies support current management practice, which focuses on control of the small number of seals that move into key salmonid rivers, rather than targeting the larger groups of animals that haul-out in nearby estuaries. [source]


Comparison of mass spectra of peptides in different matrices using matrix-assisted laser desorption/ionization and a multi-turn time-of-flight mass spectrometer, MULTUM-IMG

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 10 2008
Hisanao Hazama
The mass spectra of peptides obtained with different matrices were compared using a matrix-assisted laser desorption/ionization (MALDI) ion source and a multi-turn time-of-flight (TOF) mass spectrometer, MULTUM-IMG, which has been developed at Osaka University. Two types of solid matrices, , -cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB), and a liquid matrix made from a mixture of 3-aminoquinoline and CHCA were used. When measuring the peak signal intensity of human angiotensin II [M+H]+ from a fixed sample position, the liquid matrix produced a stable signal over 1000 laser shots, while the signal obtained with CHCA and DHB decayed after about 300 and 100 shots, respectively. Significant differences in the mass resolving power were not observed between the spectra obtained with the three matrices. Signal peak areas were measured as a function of the cycle number in a multi-turn ion trajectory, i.e., the total flight time over a millisecond time scale. For both [M+H]+ of human angiotensin II and bovine insulin, the decay of the signal peak area was the most significant with CHCA, while that measured with DHB was the smallest. The results of the mean initial ion velocity measurements suggested that the extent of metastable decomposition of the analyte ions increased in order of DHB, the liquid matrix, and CHCA, which is consistent with the difference in the decay of the signal peak area as the total flight time increased. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes

BIOTECHNOLOGY & BIOENGINEERING, Issue 1 2006
Yung-Chih Kuo
Abstract Chitin and chitosan were hybridized in various weight percentages by genipin crosslinkage under various prefreezing temperatures to form tissue-engineering scaffolds via lyophilization. In addition, deposition of hydroxyapatite (HA) on the surface of the porous scaffolds was performed by precipitation method to achieve modified chemical compositions for chondrocyte attachments and growths. The experimental results revealed that a lower prefreezing temperature or a higher weight percentage of chitin in the chitin-chitosan scaffolds would yield a smaller pore diameter, a greater porosity, a larger specific surface area, a higher Young's modulus, and a lower extensibility. Moreover, a higher chitin percentage could also result in a higher content of amine groups after crosslink and a lower onset temperature for the phase transition after thermal treatment. A decrease in the prefreezing temperature from ,4°C to ,80°C, an increase in the chitin percentage from 20% to 50%, and an increase in the cycle number of alternate immersion for HA deposition from 1 to 5 generated positive effects on the cell number, the content of glycosaminoglycans, and the collagen level over 28-day cultivation of bovine knee chondrocytes. © 2006 Wiley Periodicals, Inc. [source]


An elastoplastic model based on the shakedown concept for flexible pavements unbound granular materials

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 6 2005
Taha Habiballah
Abstract Nowadays, the problem of rutting of flexible pavements linked to permanent deformations occurring in the unbound layers is taken into account only by mechanistic empirical formulas. Finite element modelling of realistic boundary value problems with incremental rheological models will lead to unrealistic calculation time for large cycle numbers. The objective of the authors is to present a simplified model which can be used to model the flexible pavements rutting with the finite elements framework. This method is based on the shakedown theory developed by Zarka which is usually associated to materials like steels. It has been adapted for granular materials by introducing a yield surface taking into account the mean stress influence on the mechanical behaviour and a dependency of the hardening modulus with the stress state. The Drucker,Prager yield surface has been used with a non-associated flow rule. Comparisons with repeated load triaxial tests carried out on a subgrade soil have been done. These comparisons underline the capabilities of the model to take into account the cyclic behaviour of unbound materials for roads. Finally, a discussion, dealing with the use of the simplified method within a finite element modelling of a full-scale experiment, is presented. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Comparison of volatile emissions and structural changes of melt reprocessed polypropylene resins

ADVANCES IN POLYMER TECHNOLOGY, Issue 4 2002
Q. Xiang
Abstract Polypropylene (PP), as a commodity recyclable thermoplastic, was studied in this research to evaluate the potential environmental impact resulting from volatile organic compounds (VOCs) emitted during multiple melt reprocessing. Unstabilized PP (U-PP) and stabilized PP (S-PP) resins, simulating recycled materials prone to degradation, were evaluated for total VOC emissions generated during multiple melt reprocessing by injection molding and extrusion, respectively. Results show that the maximum amount of total VOCs from each cycle (up to six cycles for extrusion and up to ten for injection molding) did not significantly change, while the cumulative VOCs increased with increasing processing cycle for both materials. A good correlation between cumulative VOC increases and melt flow index increase for the U-PP and weight-average molecular weight Mw decrease for the S-PP were obtained. Reprocessing in all cases was accompanied by decreases in Mw and melt viscosity as a result of thermooxidative degradation. FTIR data considering increases in carbonyl content and degree of unsaturation suggest that at equivalent cycle numbers, degradation appears to be more severe for the extruded material in spite of the longer oxidative induction time of the "as received" pellets used in extrusion. The onset and type of structural changes are shown to depend on cycle number and reprocessing method. © 2002 Wiley Periodicals, Inc. Adv Polym Techn 21: 235,242, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.10027 [source]