Cycle Machinery (cycle + machinery)

Distribution by Scientific Domains

Kinds of Cycle Machinery

  • cell cycle machinery


  • Selected Abstracts


    The rho GTPase Rac1 is required for proliferation and survival of progenitors in the developing forebrain

    DEVELOPMENTAL NEUROBIOLOGY, Issue 9 2010
    Dino P. Leone
    Abstract Progenitor cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing forebrain give rise to neurons and glial cells, and are characterized by distinct morphologies and proliferative behaviors. The mechanisms that distinguish VZ and SVZ progenitors are not well understood, although the homeodomain transcription factor Cux2 and Cyclin D2, a core component of the cell cycle machinery, are specifically involved in controlling SVZ cell proliferation. Rho GTPases have been implicated in regulating the proliferation, differentiation, and migration of many cell types, and one family member, Cdc42, affects the polarity and proliferation of radial glial cells in the VZ. Here, we show that another family member, Rac1, is required for the normal proliferation and differentiation of SVZ progenitors and for survival of both VZ and SVZ progenitors. A forebrain-specific loss of Rac1 leads to an SVZ-specific reduction in proliferation, a concomitant increase in cell cycle exit, and premature differentiation. In Rac1 mutants, the SVZ and VZ can no longer be delineated, but rather fuse to become a single compact zone of intermingled cells. Cyclin D2 expression, which is normally expressed by both VZ and SVZ progenitors, is reduced in Rac1 mutants, suggesting that the mutant cells differentiate precociously. Rac1-deficient mice can still generate SVZ-derived upper layer neurons, indicating that Rac1 is not required for the acquisition of upper layer neuronal fates, but instead is needed for the normal regulation of proliferation by progenitor cells in the SVZ. © 2010 Wiley Periodicals, Inc. Develop Neurobiol 70: 659,678, 2010 [source]


    PTHrP Signaling Targets Cyclin D1 and Induces Osteoblastic Cell Growth Arrest,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2005
    Nabanita S Datta PhD
    Abstract PTHrP control of the MC3T3-E1 cell cycle machinery showed that, during differentiation, PTHrP induced G1 growth arrest. Cyclin D1 was a critical mediator as a downstream effector of cAMP, PKC, and MAPK signaling, and the process was PKA-independent. The involvement of JunB has been found critical for PTHrP effects. Introduction: PTH-related protein (PTHrP) has been implicated in the control of bone cell turnover, but the mechanisms underlying its effect on osteoblast proliferation and differentiation have not been clearly defined. The mechanisms by which PTHrP impacts cell cycle proteins and the role of signaling pathways in differentiated osteoblasts were studied. Materials and Methods: To elucidate the role of PTHrP, flow cytometric analyses were performed using MC3T3-E1 and primary mouse calvarial cells. Relative protein abundance (Western blot), physical association of partners (immunoprecipitation), and kinase activities (in vitro kinase assays using either GST-Rb or H1-histone as substrates) of cell cycle-associated proteins in vehicle and PTHrP-treated 7-day differentiated cells were determined. ELISA and/or Northern blot analyses were done to evaluate JunB and cyclin D1 expression. SiRNA-mediated gene silencing experiments were performed to silence JunB protein. Finally, inhibitors of cAMP, protein kinase A (PKA), protein kinase C (PKC), and mitogen-activated protein kinase (MAPK) were used to determine involvement of different signaling pathways. Results: PTHrP inhibited cyclin D1 protein expression 7-fold in a dose- and time-dependent manner and increased the level of p16 protein in differentiated osteoblasts. Additionally, PTHrP reduced cyclin D1-CDK4/CDK6 and CDK1 kinase activities. Forskolin, a cAMP agonist, mimicked PTHrP action, and the PKC inhibitor, GF109203X, slightly blocked downregulation of cyclin D1, implying involvement of both cAMP and PKC. U0126, a MAPK inhibitor, alone decreased cyclin D1 protein, suggesting that the basal cyclin D1 protein is MAPK dependent. H-89, a PKA inhibitor, did not alter the effect of PTHrP on cyclin D1, suggesting a PKA-independent mechanism. Finally, expression of JunB, an activating protein-1 transcription factor, was significantly upregulated, and silencing JunB (siRNA) partially reversed the cyclin D1 response, implying involvement of JunB in the PTHrP-mediated growth arrest of MC3T3-E1 cells. Conclusion: PTHrP upregulates JunB and reduces cyclin D1 expression while inducing G1 cell cycle arrest in differentiated osteoblasts. Such regulation could be an important determinant of the life span and bone-forming activity of osteoblasts. [source]


    Genetic engineering to study testicular tumorigenesis

    APMIS, Issue 1 2003
    WEI YAN
    In humans, Sertoli cell tumors account for approximately 4% of all testicular tumors, and 20% of these are malignant. The mechanisms underlying Sertoli cell tumorigenesis remain largely unknown. Using gene knockout technology, we previously generated mutant mice lacking the , subunit of inhibin dimers. The inhibin ,-null male mice develop testicular Sertoli cell tumors with 100% penetrance. These tumors develop as early as 4 weeks of age and cause a cachexia-like wasting syndrome. Castrated inhibin , knockout mice develop sex steroidogenic adrenal cortical tumors. These studies have identified inhibins as secreted tumor suppressors with specificity for the gonads and adrenal glands. It had been suggested that endocrine factors play roles in Sertoli cell tumorigenesis by altering cell cycle machinery of the Sertoli cells. To test the potential of these factors to function as modifiers of Sertoli cell tumorigenesis, we have employed a genetic intercross strategy, breeding inhibin , mutant mice with mutant mice deficient in endocrine signaling factors including gonadotropin releasing hormone (hypogonadal, hpg mice), follicle stimulating hormone, anti-Müllerian hormone (MH), activin receptor type II, or androgen receptor (testicular feminization, tfm mice), or mice overexpressing follistatin. We are also investigating the effects of loss of critical cell cycle regulators, such as cyclin dependent kinase inhibitor p27, on Sertoli cell tumorigenesis in inhibin , knockout males. These studies clearly demonstrate the roles of these factors as modifiers of the Sertoli cell tumorigenesis. Activin signaling through activin receptor type II is responsible for the cachexia-like syndrome observed in the inhibin , knockout mice with tumors. The gonadotropin hormones are essential for testicular tumor development, but elevated FSH levels are not sufficient to cause Sertoli cell tumors. Absence of FSH, lack of androgen receptor, or overexpression of follistatin slows the tumor growth and minimizes the cachexia symptoms, thus prolonging the life span of these double mutant mice. In contrast, absence of AMH or p27 causes earlier onset and more aggressive development of testicular tumor, with an earlier death of double mutant mice. We are currently investigating roles of estrogen signaling pathways, and other cell cycle regulators, in tumor development in the inhibin , knockout mice by generating mice with double or triple mutations. Genetic engineering in mouse models provides a powerful tool to study the mechanisms of testicular tumorigenesis and define the important genetic modifiers in vivo. [source]


    Heat shock-induced arrests in different cell cycle phases of rat C6-glioma cells are attenuated in heat shock-primed thermotolerant cells

    CELL PROLIFERATION, Issue 3 2000
    N. M. Kühl
    The response kinetics of rat C6 glioma cells to heat shock was investigated by means of flow cytometric DNA measurements and western blot analysis of HSP levels. The results showed that the effects on cell cycle progression are dependent on the cell cycle phase at which heat shock is applied, leading to either G1 or G2/M arrest in randomly proliferating cells. When synchronous cultures were stressed during G0 they were arrested with G1 DNA content and showed prolongation of S and G2 phases after release from the block. In proliferating cells, HSC70 and HSP68 were induced during the recovery and reached maximum levels just before cells were released from the cell cycle blocks. Hyperthermic pretreatment induced thermotolerance both in asynchronous and synchronous cultures as evidenced by the reduced arrest of cell cycle progression after the second heat shock. Thermotolerance development was independent of the cell cycle phase. Pre-treated cells already had high HSP levels and did not further increase the amount of HSP after the second treatment. However, as in unprimed cells, HSP reduction coincided with the release from the cell cycle blocks. These results imply that the cell cycle machinery can be rendered thermotolerant by heat shock pretreatment and supports the assumption that HSP70 family members might be involved in thermotolerance development. [source]