Cycle Frequencies (cycle + frequency)

Distribution by Scientific Domains


Selected Abstracts


Limitations of relaxation kinetics on muscular work

ACTA PHYSIOLOGICA, Issue 2 2010
J. McDaniel
Abstract Aim:, Positive net work produced during cyclic contractions is partially limited by relaxation kinetics, which to date, have not been directly investigated. Therefore, the purpose of this investigation was to determine the influence of relaxation kinetics on cyclic work. Methods:, Soleus muscles of four cats were isolated and subjected to a series of work loops (0.5, 1, 1.5 and 2 Hz cycle frequencies) during which stimulation terminated prior to the end of the shortening phase to allow for complete muscle relaxation and matched discrete sinusoidal shortening contractions during which stimulation remained on until the completion of the shortening phase. Muscle length changes during these protocols were centred on optimum length and were performed across muscle lengths that represented walking gait. Results:, When muscle excursions were centred on Lo relaxation kinetics decreased muscular work by 2.8 ± 0.8%, 12.1 ± 4.1%, 27.9 ± 4.5% and 40.1 ± 5.9% for 0.5, 1, 1.5 and 2 Hz respectively. However, relaxation kinetics did not influence muscular work when muscle excursions represented walking gait. In addition, muscular work produced at muscle lengths associated with walking gait was less than the work produced across Lo (55.7 ± 20.0%, 53.5 ± 21.0%, and 50.1 ± 22.0% for 0.5, 1 and 1.5 Hz respectively). Conclusion:, These results imply that relaxation kinetics are an important factor that limit the ability of muscle to produce work; however, the influence of relaxation kinetics on physiological function may depend on the relation between the optimum length and natural excursion of a muscle. [source]


Blind separation of convolutive mixtures of cyclostationary signals

INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, Issue 3 2004
Wenwu Wang
Abstract An adaptive blind source separation algorithm for the separation of convolutive mixtures of cyclostationary signals is proposed. The algorithm is derived by applying natural gradient iterative learning to a novel cost function which is defined according to the wide sense cyclostationarity of signals and can be deemed as a new member of the family of natural gradient algorithms for convolutive mixtures. A method based on estimating the cycle frequencies required for practical implementation of the proposed algorithm is presented. The efficiency of the algorithm is supported by simulations, which show that the proposed algorithm has improved performance for the separation of convolved cyclostationary signals in terms of convergence speed and waveform similarity measurement, as compared to the conventional natural gradient algorithm for convolutive mixtures. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Some Preliminary Findings on Hong Kong Business Cycles

PACIFIC ECONOMIC REVIEW, Issue 1 2001
Chi Fai Leung
This paper presents some preliminary quantitative findings on the characteristics of business cycles in Hong Kong. The recently developed "approximate bandpass filter" is used to extract the fluctuations at business cycle frequencies (8 to 32 quarters) of macroeconomic time series. Based on the filtered time series, the paper identifies the cyclical turning points, describes the pattern of output fluctuations, and examines the co-movement of various macroeconomic variables. [source]


Baghouse system design based on economic optimization

ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, Issue 4 2000
Antonio C. Caputo
In this paper a method is described for using economic optimization in the design of baghouse systems. That is, for a given emission control problem, the total filtration surface area, the overall pressure drop, fabric material effects, and the cleaning cycle frequency, may all be evaluated simultaneously. In fact, as baghouse design parameters affect capital and operating expenses in interrelated and counteracting manners, a minimum total cost may be searched defining the best arrangement of dust collection devices. With this in mind, detailed cost functions have been developed with the aim of providing an overall economic model. As a result, a discounted total annual cost has been obtained that may be minimized by allowing for optimal baghouse characterization. Finally, in order to highlight the capabilities of the proposed methodology, some optimized solutions are also presented, which consider the economic impact of both bag materials and dust properties. [source]


Formulation, preparation and evaluation of flunarizine-loaded lipid microspheres

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 3 2007
Yan Jiao Wang
The aim of this study was to investigate the feasibility of preparing flunarizine-loaded lipid microspheres. Lipid microspheres (LMs) are excellent drug carriers for drug delivery systems (DDS) and are relatively stable and easily mass-produced. They have no particular adverse effects. LMs have been widely studied as drug carriers for water-soluble drugs, lipid-soluble drugs and inadequately soluble (in water or in lipid) drugs, in that they have a lipid layer, a water layer and an emulsifier layer. Flunarizine (FZ), a poorly water-soluble drug, was incorporated in lipid microspheres to reduce side effects by avoiding the use of supplementary agents, compared with solution injection. After investigation, the final formulation was as follows: 10% oil phase (long-chain triglyceride (LCT); medium-chain fatty acid (MCT) = 50:50); 1.2% egg lecithin; 0.2% Tween-80; 2.5% glycerin; 0.3% dl-,-tocopherol; 0.02% EDTA; 0.03% sodium oleate; 0.1% FZ and double-distilled water to give a total volume of 100 mL. Homogenization was the main method of preparation and the best conditions were a temperature of 40°C, a pressure of 700,800 bar and a suitable cycle frequency of about 10. The particle size distribution, zeta-potential and entrapment efficacy were found to be 198.7 ± 54.0 nm, ,26.4mV and 96.2%, respectively. Its concentration in the preparation was 1.0mg mL,1. The lipid microspheres were stable during storage at 4°C, 25°C and 37°C for 3 months. Pharmacokinetic studies were performed in rats using a dose of 1.0 mg kg,1. The pharmacokinetic parameters were as follows: AUC0-t 6.13 ,g h mL,1, t½ 5.32 h and Ke 0.16 Lh,1. The preparation data fitted a two-compartment model estimated by using 3p87 analysis software. From the observed data, FZ encapsulated in LMs did not significantly alter the pharmacokinetic characteristic compared with the FZ solution injection and did not produce a delayed release effect, when it was released in-vivo in rats. However, the availability of the drug was increased. These results suggested that this LM system is a promising option for the preparation of the liquid form of FZ for intravenous administration. [source]


Hydrodynamic characteristics of gas,solid fluidization at high temperature

THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, Issue 1 2010
Shabnam Sanaei
Abstract Effect of temperature on the hydrodynamics of bubbling gas,solid fluidized beds was investigated in this work. Experiments were carried out at different temperatures ranged of 25,600°C and different superficial gas velocities in the range of 0.17,0.78,m/s with sand particles. The time-position trajectory of particles was obtained by the radioactive particle tracking technique at elevated temperature. These data were used for determination of some hydrodynamic parameters (mean velocity of upward and downward-moving particles, jump frequency, cycle frequency, and axial/radial diffusivities) which are representative to solids mixing through the bed. It was shown that solids mixing and diffusivity of particles increases by increasing temperature up to around 300°C. However, these parameters decrease by further increasing the temperature to higher than 300°C. This could be attributed to the properties of bubble and emulsion phases. Results of this study indicated that the bubbles grow up to a maximum diameter by increasing the temperature up to 300°C, after which the bubbles become smaller. The results showed that due to the wall effect, there is no significant change in the mean velocity of downward-moving clusters. In order to explain these trends, surface tension of emulsion between the rising bubble and the emulsion phase was introduced and evaluated in the bubbling fluidized bed. The results showed that surface tension between bubble and emulsion is increased by increasing temperature up to 300°C, however, after that it acts in oppositely. L'effet de la température sur l'hydrodynamique de lits fluidisés de gaz-solide bouillonnants a fait l'objet de l'étude de cet ouvrage. Des expériences ont été faites à différentes températures se situant entre 25 et 600°C et différentes vélocités de gaz superficiels sur une plage de 0,17 à 0,78,m/s avec particules de sable. La trajectoire temps-position des particules a été obtenue à l'aide d'une technique de repérage par particules radioactives à haute température. Ces données ont été utilisées pour déterminer certains des paramètres hydrodynamiques (vélocité moyenne des particules ascendantes et descendantes, la fréquence de sauts bonds, la fréquence de cycles et les diffusivités axiales et radiales), lesquels sont représentatifs de solides se mélangeant dans le lit. Il a été démontré que le mélange de solides et la diffusivité des particules augmentent en haussant la température à environ 300°C. Cependant, ces paramètres diminuent en accroissant davantage la température au-delà de 300°C. Cela pourrait être attribué aux propriétés des phases de bouillonnement et d'émulsion. Les résultats de cette étude indiquent que les bulles croissent pour atteindre un diamètre maximum en augmentant la température jusqu'à 300°C. Au-delà de cette température, les bulles deviennent plus petites. Les résultats démontrent qu'en raison de l'effet de paroi, il n'y a pas de changement significatif à la vélocité moyenne des grappes descendantes. Afin d'expliquer ces tendances, la tension de surface de l'émulsion entre la bulle ascendante et la phase émulsion a été introduite et évaluée dans le lit fluidisé bouillonnant. Les résultats ont démontré que la tension de surface entre la bulle et l'émulsion augmente en haussant à température jusqu'à 300°C; cependant, après cette température, elle agit inversement. [source]