Cycle Deregulation (cycle + deregulation)

Distribution by Scientific Domains

Kinds of Cycle Deregulation

  • cell cycle deregulation


  • Selected Abstracts


    Cell cycle deregulation in liver lesions of rats with and without genetic predisposition to hepatocarcinogenesis

    HEPATOLOGY, Issue 6 2002
    Rosa M. Pascale
    Preneoplastic and neoplastic hepatocytes undergo c-Myc up-regulation and overgrowth in rats genetically susceptible to hepatocarcinogenesis, but not in resistant rats. Because c-Myc regulates the pRb-E2F pathway, we evaluated cell cycle gene expression in neoplastic nodules and hepatocellular carcinomas (HCCs), induced by initiation/selection (IS) protocols 40 and 70 weeks after diethylnitrosamine treatment, in susceptible Fisher 344 (F344) rats, and resistant Wistar and Brown Norway (BN) rats. No interstrain differences in gene expression occurred in normal liver. Overexpression of c- myc, Cyclins D1, E, and A, and E2F1 genes, at messenger RNA (mRNA) and protein levels, rise in Cyclin D1-CDK4, Cyclin E-CDK2, and E2F1-DP1 complexes, and pRb hyperphosphorylation occurred in nodules and HCCs of F344 rats. Expression of Cdk4, Cdk2, p16INK4A, and p27KIP1 did not change. In nodules and/or HCCs of Wistar and BN rats, low or no increases in c- myc, Cyclins D1, E, and A, and E2F1 expression, and Cyclin-CDKs complex formation were associated with p16INK4A overexpression and pRb hypophosphorylation. In conclusion, these results suggest deregulation of G1 and S phases in liver lesions of susceptible rats and block of G1-S transition in lesions of resistant strains, which explains their low progression capacity. [source]


    The degradation of cell cycle regulators by SKP2/CKS1 ubiquitin ligase is genetically controlled in rodent liver cancer and contributes to determine the susceptibility to the disease

    INTERNATIONAL JOURNAL OF CANCER, Issue 5 2010
    Diego F. Calvisi
    Abstract Previous work showed a genetic control of cell cycle deregulation during hepatocarcinogenesis. We now evaluated in preneoplastic lesions, dysplastic nodules and hepatocellular carcinoma (HCC), chemically induced in genetically susceptible F344 and resistant Brown Norway (BN) rats, the role of cell cycle regulating proteins in the determination of a phenotype susceptible to HCC development. p21WAF1, p27KIP1, p57KIP2 and p130 mRNA levels increased in fast growing lesions of F344 rats. Lower/no increases occurred in slowly growing lesions of BN rats. A similar behavior of RassF1A mRNA was previously found in the 2 rat strains. However, p21WAF1, p27KIP1, p57KIP, p130 and RassF1A proteins exhibited no change/low increase in the lesions of F344 rats and consistent rise in dysplastic nodules and HCC of BN rats. Increase in Cks1-Skp2 ligase and ubiquitination of cell cycle regulators occurred in F344 but not in BN rat lesions, indicating that posttranslational modifications of cell cycle regulators are under genetic control and contribute to determine a phenotype susceptible to HCC. Moreover, proliferation index of 60 human HCCs was inversely correlated with protein levels but not with mRNA levels of P21WAF1, P27KIP1, P57KIP2 and P130, indicating a control of human HCC proliferation by posttranslational modifications of cell cycle regulators. [source]


    Ras family genes: An interesting link between cell cycle and cancer

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2002
    M. Macaluso
    Ras genes are evolutionary conserved and codify for a monomeric G protein binding GTP (active form) or GDP (inactive form). The ras genes are ubiquitously expressed although mRNA analysis suggests different level expression in tissue. Mutations in each ras gene frequently were found in different tumors, suggesting their involvement in the development of specific neoplasia. These mutations lead to a constitutive active and potentially oncogenic protein that could cause a deregulation of cell cycle. Ras protein moderates cellular responses at several mitogens and/or differentiation factors and at external stimuli. These stimuli activate a series of signal transduction pathways that either can be independent or interconnected at different points. Recent observations begin to clarify the complex relationship between Ras activation, apoptosis, and cellular proliferation. A greater understanding of these processes would help to identify the factors directly responsible for cell cycle deregulation in several tumors, moreover it would help the design of specific therapeutic strategies, for the control on the proliferation of neoplastic cells. We summarize here current knowledge of ras genes family: structural and functional characteristics of Ras proteins and their links with cell cycle and cancer. © 2002 Wiley-Liss, Inc. [source]


    JNK is constitutively active in mantle cell lymphoma: cell cycle deregulation and polyploidy by JNK inhibitor SP600125,

    THE JOURNAL OF PATHOLOGY, Issue 1 2009
    Miao Wang
    Abstract Mantle cell lymphoma (MCL) is characterized by genetic instability and a poor prognosis. Many blastoid variants are (hypo)tetraploid and have an even worse prognosis. We investigated the role of signalling by mitogen-activated protein kinases (MAPKs) in MCL. As compared to normal tonsil B cells, MCL cells showed higher activation of the JNK MAPK in both an MAPK array and a sandwich ELISA assay. Immunohistochemistry showed overexpression of phospho (p)-JNK (Thr183/Tyr185) in 30 of 37 MCL cases. Inhibition of p-JNK with SP600125 resulted in growth arrest in all four MCL cell lines (Jeko-1, HBL-2, UPN-1, Granta-519), which could be partly reversed by the addition of CD40L and IL-4. Furthermore, SP600125 led to G2/M phase arrest on day 1 and a striking increase in endoreduplication on day 2 and day 3, which was confirmed by karyotype analysis. G2/M arrest was associated with down-regulation of EGR1 and p21 protein expression. SP600125-induced polyploidy could be blocked by the BCL-2 inhibitor YC137. These data suggest that constitutive JNK activity is necessary to promote proliferation and maintain diploidy in MCL. JNK inhibition leads to cell cycle deregulation and endoreduplication, mimicking the tetraploid state seen in a subset of MCL cases. Thus, our data also provide an experimental model to study polyploid MCL cells. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]