Cyclase Inhibitor (cyclase + inhibitor)

Distribution by Scientific Domains

Kinds of Cyclase Inhibitor

  • adenylate cyclase inhibitor
  • guanylate cyclase inhibitor
  • guanylyl cyclase inhibitor
  • soluble guanylate cyclase inhibitor
  • soluble guanylyl cyclase inhibitor


  • Selected Abstracts


    B2 kinin receptors mediate the Indian red scorpion venom-induced augmentation of visceral reflexes via the nitric oxide cyclic guanosine monophosphate pathway

    ACTA PHYSIOLOGICA, Issue 4 2009
    S. Kanoo
    Abstract Aim:, This study was performed to delineate the kinin (receptor)-dependent pathways in the Indian red scorpion (Mesobuthus tamulus; MBT) venom-induced pulmonary oedema as well as the augmentation of cardio-pulmonary reflexes evoked by phenyldiguanide (PDG). Methods:, In urethane-anaesthetized adult rats, the effect of venom on the PDG reflex responses (blood pressure, heart rate and respiration rate) and the pulmonary water content was ascertained using various antagonists(des- Arg, B1 receptor antagonist; Hoe 140, B2 receptor antagonist; N, -nitro- l -arginine methyl ester (l -NAME), nitric oxide (NO) synthase inhibitor; methylene blue, soluble guanylate cyclase inhibitor; and glibenclamide, K+ATP channel blocker). The effect of phosphodiesterase V inhibitor (sildenafil citrate) on the reflex response and the pulmonary water content was also examined and compared with venom-induced responses. Results:, Intravenous injection of PDG (10 ,g kg,1) evoked apnoea, bradycardia and hypotension lasting >60 s. Exposure to MBT venom (100 ,g kg,1) for 30 min augmented the PDG reflex responses by two times and increased the pulmonary water content, significantly. Hoe 140 blocked the venom-induced responses (augmentation of PDG reflex and increased pulmonary water content) whereas des-Arg did not. l -NAME, methylene blue or glibenclamide also blocked the venom-induced responses. Furthermore, sildenafil citrate (that increases cGMP levels) produced augmentation of PDG reflex response and increased the pulmonary water content as seen with venom. Conclusion:, The results indicate that venom-induced responses involve B2 kinin receptors via the NO-dependent guanylate cyclase-cGMP pathway involving K+ATP channels. [source]


    Differential regulation of the nitric oxide,cGMP pathway exacerbates postischaemic heart injury in stroke-prone hypertensive rats

    EXPERIMENTAL PHYSIOLOGY, Issue 1 2007
    Tetsuji Itoh
    Using a working perfused heart model, we investigated the hypothesis that alterations in the NO,cGMP pathway may exacerbate postischaemic mechanical dysfunction in the hypertrophied heart. Ischaemia for 25 min followed by reperfusion for 30 min produced marked cardiac mechanical dysfunction in both stroke-prone spontaneously hypertensive rats (SHRSP) and normotensive Wistar Kyoto rats (WKY). Exogenous treatment with S -nitroso- N -acetyl- dl -penicillamine (SNAP), a NO donor, had beneficial effects on the cardiac dysfunction induced by ischaemia,reperfusion (I/R) in the WKY heart, but the cardioprotective effect of SNAP was eliminated by guanylyl cyclase inhibitor. Cardiac cGMP levels were increased by SNAP or ischaemia in WKY. In contrast, in SHRSP hearts, SNAP could not alleviate the cardiac dysfunction caused by I/R. Pre-ischaemia, the cardiac cGMP level was significantly higher in SHRSP than in WKY; however, no significant difference was found after SNAP and ischaemia. The myocardial Ca2+ -dependent NO synthase (NOS) activity increased at the end of ischaemia in WKY. Conversely, the Ca2+ -independent NOS activity and protein levels were upregulated by I/R in the SHRSP myocardium. In the SHRSP hearts, non-selective NOS and selective Ca2+ -independent NOS inhibitors or antioxidant treatment alleviated cardiac dysfunction caused by I/R. Moreover, mRNA expression and Western blotting analysis of cGMP-dependent protein kinase type I showed more deterioration of SHRSP hearts compared with WKY. These results suggest that: (1) the NO-dependent cardioprotective effect is depressed; and (2) overproduction of NO derived from Ca2+ -independent NOS contributes to postischaemic heart injury in the hypertrophied heart of hypertensive status. [source]


    High glucose inhibits fructose uptake in renal proximal tubule cells: Involvement of cAMP, PLC/PKC, p44/42 MAPK, and cPLA2

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
    Su Hyung Park
    The precise signal that regulates fructose transport in renal proximal tubule cells (PTCs) under high glucose conditions is not yet known although fructose has been recommended as a substitute for glucose in the diets of diabetic people. Thus, we investigated that effect of high glucose on fructose uptake and its signaling pathways in primary cultured rabbit renal PTCs. Glucose inhibited the fructose uptake in a time- and dose-dependent manner. A maximal inhibitory effect of glucose on fructose uptake was observed at 25 mM glucose after 48 h, while 25 mM mannitol and l -glucose did not affect fructose uptake. Indeed, 25 mM glucose for 48 h decreased GLUT5 protein level. Thus, the treatment of 25 mM glucose for 48 h was used for this study. Glucose-induced (25 mM) inhibition of fructose uptake was blocked by pertussis toxin (PTX), SQ-22536 (an adenylate cyclase inhibitor), and myristoylated amide 14,22 (a protein kinase A inhibitor). Indeed, 25 mM glucose increased the intracellular cAMP content. Furthermore, 25 mM glucose-induced inhibition of fructose uptake was prevented by neomycin or U-73122 (phospholipase C inhibitors) and staurosporine or bisindolylmaleimide I (protein kinase C inhibitors). In fact, 25 mM glucose increased the total PKC activity and translocation of PKC from the cytosolic to membrane fraction. In addition, PD 98059 (a p44/42 mitogen-activated protein kinase (MAPK) inhibitor) but not SB 203580 (a p38 MAPK inhibitor) and mepacrine or AACOCF3 (phospholipase A2 inhibitors) blocked 25 mM glucose-induced inhibition of fructose uptake. Results of Western blotting using the p44/42 MAPK and GLUT5 antibodies were consistent with the results of uptake experiments. In conclusion, high glucose inhibits the fructose uptake through cAMP, PLC/PKC, p44/42 MAPK, and cytosolic phospholipase A2 (cPLA2) pathways in the PTCs. © 2004 Wiley-Liss, Inc. [source]


    Protein kinase G is involved in ammonia-induced swelling of astrocytes

    JOURNAL OF NEUROCHEMISTRY, Issue 2009
    Agnieszka Konopacka
    Abstract Ammonia-induced swelling of astrocytes is a primary cause of brain edema associated with acute hepatic encephalopathy. Previous studies have shown that ammonia transiently increases cGMP in brain in vivo and in cultured astrocytes in vitro. We hypothesized that protein kinase G (PKG), an enzyme activated by cGMP and implicated in regulation of cell shape, size, and/or volume in peripheral and CNS cells, may play a role in the ammonia-induced astrocytic volume increase. Treatment of cultured rat cortical astrocytes with 1 or 5 mM NH4Cl (ammonia) for 24 h increased their cell volume by 50% and 80% above control, respectively, as measured by confocal imaging followed by 3D computational analysis. A cGMP analog, 8-(4-chlorophenylthio)-cGMP, increased the cell volume in control cells and potentiated the increase in 1 mM ammonia-treated cells. A soluble guanylate cyclase inhibitor (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one) abrogated, and a PKG inhibitor [8-(4-chlorophenylthio)-cGMP-thioate, Rp-isomer] dose-dependently reduced the cell volume-increasing effect of 5 mM ammonia. The results suggest that (i) PKG may play a permissive role in ammonia-induced astrocytic swelling and (ii) elevation of brain cGMP associated with acute exposure to ammonia in vivo may aggravate the ensuing brain edema. [source]


    Neuropeptide Y stimulates retinal neural cell proliferation , involvement of nitric oxide

    JOURNAL OF NEUROCHEMISTRY, Issue 6 2008
    Ana Rita Álvaro
    Abstract Neuropeptide Y (NPY) is a 36 amino acid peptide widely present in the CNS, including the retina. Previous studies have demonstrated that NPY promotes cell proliferation of rat post-natal hippocampal and olfactory epithelium precursor cells. The aim of this work was to investigate the role of NPY on cell proliferation of rat retinal neural cells. For this purpose, primary retinal cell cultures expressing NPY, and NPY Y1, Y2, Y4 and Y5 receptors [Álvaro et al., (2007) Neurochem. Int., 50, 757] were used. NPY (10,1000 nM) stimulated cell proliferation through the activation of NPY Y1, Y2 and Y5 receptors. NPY also increased the number of proliferating neuronal progenitor cells (BrdU+/nestin+ cells). The intracellular mechanisms coupled to NPY receptors activation that mediate the increase in cell proliferation were also investigated. The stimulatory effect of NPY on cell proliferation was reduced by l -nitroarginine-methyl-esther (l -NAME; 500 ,M), a nitric oxide synthase inhibitor, 1H-[1,2,4]oxadiazolo-[4, 3-a]quinoxalin-1-one (ODQ; 20 ,M), a soluble guanylyl cyclase inhibitor or U0126 (1 ,M), an inhibitor of the extracellular signal-regulated kinase 1/2 (ERK 1/2). In conclusion, NPY stimulates retinal neural cell proliferation, and this effect is mediated through nitric oxide,cyclic GMP and ERK 1/2 pathways. [source]


    Nifedipine enhances cGMP production through the activation of soluble guanylyl cyclase in rat ventricular papillary muscle

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2005
    Kazuhiko Seya
    It is known that nifedipine, an L-type calcium channel blocker, increases cGMP production, which partially contributes to the relaxation of vascular smooth muscle. The aim of our investigation was to clarify whether or not nifedipine regulates cGMP production, which has a physiological role in cardiac muscle. To measure contractile responses and tissue cGMP levels, left ventricular papillary muscles prepared from male Wistar rats (350,400 g) were mounted in the isolated organ chamber under isometric conditions and electrically paced by means of platinum punctate electrodes (1 Hz, 1 ms duration). In papillary muscle preparation, the negative inotropic effect induced by nifedipine (30 to 300 nm) was significantly inhibited in the presence of ODQ (1H-[1,2,4]oxidazolo[4,3-a]quinoxaline-1-one; 10 ,m), a soluble guanylyl cyclase inhibitor. Furthermore, nifedipine (100 nm) strongly increased the tissue cGMP level, which was significantly decreased in the presence of ODQ. On the other hand, NG -monomethyl-l-arginine (100 ,m), a nitric oxide synthase inhibitor, did not inhibit either the negative inotropic effect or cGMP production induced by nifedipine. These results indicate that in rat left ventricular papillary muscle, nifedipine augments its negative inotropic effect at least partly through direct activation of cardiac soluble guanylyl cyclase but not nitric oxide synthase. [source]


    Effect of ropivacaine on endothelium-dependent phenylephrine-induced contraction in guinea pig aorta

    ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 10 2007
    P. L. Lin
    Background:, Previous studies have shown that ropivacaine has biphasic vascular effects, causing vasoconstriction at low concentrations and vasorelaxation at high concentrations. This study was designed to examine the role of the endothelium during accidental intravascular absorption of ropivacaine, and to elucidate the mechanisms responsible. Methods:, Isolated guinea pig aortic rings were suspended for isometric tension recording. The effects of ropivacaine on endothelium-intact and endothelium-denuded aortic rings were assessed. Endothelium-intact aortic rings were pre-contracted with phenylephrine before being exposed to ropivacaine and acetylcholine, in order to generate and compare concentration,response curves. In the absence and presence of yohimbine, propranolol, atropine, indometacin, NG -nitro- l -arginine methyl ester (l -NAME), 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or methylene blue, the contractile response induced by ropivacaine was assessed on endothelium-intact aortic rings pre-contracted with phenylephrine. Results:, Ropivacaine (3 × 10,4 to 10,2 mol/l) produced vasoconstriction in endothelium-denuded aortic rings, whereas no such response was observed in aortic rings with intact endothelium. In phenylephrine pre-contracted intact aortic rings, ropivacaine induced a greater degree of vasorelaxation than did acetylcholine. Yohimbine, propranolol and atropine all failed to affect the relaxation responses induced by ropivacaine. However, pre-treatment with indometacin (cyclo-oxygenase inhibitor), l -NAME (nitric oxide synthase inhibitor), methylene blue (soluble guanylyl cyclase inhibitor) or ODQ (soluble guanylyl cyclase inhibitor), significantly decreased the ropivacaine-induced relaxation of endothelium-intact aortic rings (3 × 10,4 to 10,2 mol/l). Conclusions:, Ropivacaine elicits an endothelium-dependent vasorelaxation in phenylephrine pre-contracted aortic rings via the nitric oxide,cyclic guanosine 3,,5,-monophosphate pathway and the prostaglandin system. [source]


    Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathway

    MOLECULAR CARCINOGENESIS, Issue 11 2007
    Xingya Wang
    Abstract Prostaglandin E2 (PGE2) has been shown to induce expression of vascular endothelial growth factor (VEGF) and other signaling molecules in several cancers. PGE2 elicits its functions though four G-protein coupled membrane receptors (EP1,4). In this study, we investigated the role of EP receptors in PGE2 -induced molecular events in prostate cancer cells. qRT-PCR analysis revealed that PC-3 cells express a substantially higher level of EP2 and moderately higher EP4 than DU145 and LNCaP cells. LNCaP cells had virtually no detectable EP2 mRNA. EP1 and EP3 mRNAs were not detected in these cells. Treatment of prostate cancer cells with PGE2 (1 nM,10 µM) increased both VEGF secretion and cyclic adenosine monophosphate (cAMP) production. Levels of induction in PC-3 cells were greater than in DU145 and LNCaP cells. The selective EP2 agonist CAY10399 also significantly increased VEGF secretion and cAMP production in PC-3 cells, but not in DU145 and LNCaP cells. Moreover, PGE2 and CAY10399 increased mitogen activated protein kinase/extracellular signal regulated kinase (MAPK/Erk) and Akt phosphorylation in PC-3 and DU145 cells, but not in LNCaP cells. However, neither the MAPK/Erk inhibitor U0126 nor the PI3K/Akt inhibitor LY294002 abolished PGE2 -induced VEGF secretion in PC-3 cells. We further demonstrated that the adenylate cyclase activator forskolin and the cAMP anologue 8-bromo-cAMP mimicked the effects of PGE2 on VEGF secretion in PC-3 cells. Meanwhile, the adenylate cyclase inhibitor 2,5,-dideoxyadenosine, at concentrations that inhibited PGE2 -induced cAMP, significantly blocked PGE2 -induced VEGF secretion in PC-3 cells. We conclude that PGE2 -induced VEGF secretion in prostate cancer cells is mediated through EP2-, and possibly EP4-, dependent cAMP signaling pathways. © 2007 Wiley-Liss, Inc. [source]


    The role of cyclic-AMP on arginase activity by a murine macrophage cell line (RAW264.7) stimulated with lipopolysaccharide from Actinobacillus actinomycetemcomitans

    MOLECULAR ORAL MICROBIOLOGY, Issue 6 2006
    W. Sosroseno
    Aims:, The aim of the present study was to determine the role of cyclic adenosine monophosphate (cAMP) on arginase activity in a murine macrophage cell line (RAW264.7 cells) stimulated with lipopolysaccharide (LPS) from Actinobacillus actinomycetemcomitans. Materials and methods:, The cells were treated with A. actinomycetemcomitans LPS for 24 h. The effects of SQ22536 (an adenylyl cyclase inhibitor), ODQ (a guanylyl cyclase inhibitor), dibutyryl cAMP (a cAMP analog), 8-bromo cyclic guanosine monophosphate (a cGMP analog), forskolin (an adenylyl cylase activator), and cycloheximide (a protein synthesis inhibitor) on arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells were also determined. Arginase activity was assessed in LPS-stimulated cells in the presence of 3-isobutyl-1-methylxanthine (IBMX), siguazodan and rolipram [phosphodiesterase (PDE) inhibitors] as well as KT5720 [a protein kinase A (PKA) inhibitor]. Results:, Arginase activity in A. actinomycetemcomitans LPS-stimulated RAW264.7 cells was suppressed by SQ22536 but not ODQ. Enhancement of arginase activity was observed in the presence of cAMP analog or forskolin but not cGMP analog. Cycloheximide blocked arginase activity in the cells in the presence of cAMP analog or forskolin with or without A. actinomycetemcomitans LPS. IBMX augmented arginase activity in A. actinomycetemcomitans LPS-stimulated cells. Rolipram (a PDE4 inhibitor) increased the levels of arginase activity higher than siguazodan (a PDE3 inhibitor) in the antigen-stimulated cells. The effect of cAMP analog or forskolin on arginase activity in the presence or absence of A. actinomycetemcomitans LPS was blocked by the PKA inhibitor (KT5720). Conclusion:, The results of the present study suggest that A. actinomycetemcomitans LPS may stimulate arginase activity in murine macrophages (RAW264.7 cells) in a cAMP-PKA-dependent pathway. [source]


    Microinjection of glutamate into dorsal motor nucleus of the vagus excites gallbladder motility through NMDA receptor , nitric oxide , cGMP pathway

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 3 2004
    C. Y. Liu
    Abstract, We have reported that both glutamate and nitric oxide (NO) participated in the regulation of gallbladder motility in dorsal motor nucleus of the vagus (DMV). The aim of this study is to investigate the type of receptor in DMV that mediates the excitatory effect of glutamate on gallbladder motility and the correlation between the glutamate and NO. A frog bladder connected with a force transducer was inserted into the gallbladder to record the change of gallbladder pressure. Glutamate (65 mmol L,1, 100 nL) microinjected into DMV significantly increased the strength of gallbladder phasic contraction. This effect was abolished by ketamine (180 mmol L,1, 100 nL), the specific N -methyl- d -aspartic acid (NMDA) receptor antagonist, but was not influenced by 6-cyaon-7-nitroquinoxaline-2,3-(1H,4H)-dione (CNQX) (180 mmol L,1, 100 nL), the non-NMDA ionotropic receptor antagonist. NG -nitro- l -arginine-emthyl (l -NAME) (1 mol L,1, 100 nL), the nitric oxide synthase (NOS) inhibitor, reversed the excitatory effect of glutamate on gallbladder motility. Microinjection of sodium nitroprusside (SNP), the NO donor, into DMV enhanced the gallbladder motility, and this effect was not modulated by ketamine. Microinjection of NMDA (5 mmol L,1, 100 nL) increased the strength of gallbladder phasic contraction, and this effect was attenuated by methylene blue (100 mmol L,1, 100 nL), the soluble guanylate cyclase inhibitor. These results suggest that glutamate regulate the gallbladder motility through the NMDA receptor , NO , cGMP pathway in DMV. [source]


    Role of hypoxia and cAMP in the transdifferentiation of human fetal cardiac fibroblasts: Implications for progression to scarring in autoimmune-associated congenital heart block

    ARTHRITIS & RHEUMATISM, Issue 12 2007
    Robert M. Clancy
    Objective Identification of isolated congenital heart block (CHB) predicts, with near certainty, the presence of maternal anti-SSA/Ro antibodies; however, the 2% incidence of CHB in first offspring of anti-SSA/Ro+ mothers, 20% recurrence in subsequent pregnancies, and discordance in identical twins suggest that an environmental factor amplifies the effect of the antibody. Accordingly, this study was carried out to explore the hypothesis that hypoxia potentiates a profibrosing phenotype of the fetal cardiac fibroblast. Methods Evidence of an effect of hypoxia was sought by immunohistologic evaluation of CHB-affected fetal heart tissue and by determination of erythropoietin levels in cord blood. The in vitro effect of hypoxia on gene expression and phenotype in fibroblasts derived from fetal hearts and lungs was investigated by Affymetrix arrays, quantitative polymerase chain reaction (PCR), immunofluorescence, and immunoblotting. Results In vivo hypoxic exposure was supported by the prominent intracellular fibroblast expression of hypoxia-inducible factor 1, in conduction tissue from 2 fetuses in whom CHB led to death. The possibility that hypoxia was sustained was suggested by significantly elevated erythropoietin levels in cord blood from CHB-affected, as compared with unaffected, anti-SSA/Ro,exposed neonates. In vitro exposure of cardiac fibroblasts to hypoxia resulted in transdifferentiation to myofibroblasts (a scarring phenotype), as demonstrated on immunoblots and immunofluorescence by increased expression of smooth muscle actin (SMA), an effect not seen in lung fibroblasts. Hypoxia-exposed cardiac fibroblasts expressed adrenomedullin at 4-fold increased levels, as determined by Affymetrix array, quantitative PCR, and immunofluorescence, thus focusing attention on cAMP as a modulator of fibrosis. MDL12,330A, an adenylate cyclase inhibitor that lowers the levels of cAMP, increased expression of fibrosis-related proteins (mammalian target of rapamycin, SMA, plasminogen activator inhibitor type 1, and type I collagen), while the cAMP activator forskolin attenuated transforming growth factor ,,elicited fibrosing end points in the cardiac fibroblasts. Conclusion These findings provide evidence that hypoxia may amplify the injurious effects of anti-SSA/Ro antibodies. Modulation of cAMP may be a key component in the scarring phenotype. Further assessment of the susceptibility of cardiac fibroblasts to cAMP modulation offers a new research direction in CHB. [source]


    KMUP-1 activates BKCa channels in basilar artery myocytes via cyclic nucleotide-dependent protein kinases

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2005
    Bin-Nan Wu
    This study investigated whether KMUP-1, a synthetic xanthine-based derivative, augments the delayed-rectifier potassium (KDR)- or large-conductance Ca2+ -activated potassium (BKCa) channel activity in rat basilar arteries through protein kinase-dependent and -independent mechanisms. Cerebral smooth muscle cells were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K+ - and Ca2+ channel activities. KMUP-1 (1 ,M) had no effect on the KDR current but dramatically enhanced BKCa channel activity. This increased BKCa current activity was abolished by charybdotoxin (100 nM) and iberiotoxin (100 nM). Like KMUP-1, the membrane-permeable analogs of cGMP (8-Br-cGMP) and cAMP (8-Br-cAMP) enhanced the BKCa current. BKCa current activation by KMUP-1 was markedly inhibited by a soluble guanylate cyclase inhibitor (ODQ 10 ,M), an adenylate cyclase inhibitor (SQ 22536 10 ,M), competitive antagonists of cGMP and cAMP (Rp-cGMP, 100 ,M and Rp-cAMP, 100 ,M), and cGMP- and cAMP-dependent protein kinase inhibitors (KT5823, 300 nM and KT5720, 300 nM). Voltage-dependent L-type Ca2+ current was significantly suppressed by KMUP-1 (1 ,M), and nearly abolished by a calcium channel blocker (nifedipine, 1 ,M). In conclusion, KMUP-1 stimulates BKCa currents by enhancing the activity of cGMP-dependent protein kinase, and in part this is due to increasing cAMP-dependent protein kinase. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and the relaxation of cerebral arteries. British Journal of Pharmacology (2005) 146, 862,871. doi:10.1038/sj.bjp.0706387 [source]


    Role of sarcoplasmic reticulum in control of membrane potential and nitrergic response in opossum lower esophageal sphincter

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2003
    Yong Zhang
    We previously demonstrated that a balance of Ca2+ -activated Cl, current (ICl(Ca)) and K+ current activity sets the resting membrane potential of opossum lower esophageal sphincter (LES) circular smooth muscle at ,,41 mV, which leads to continuous spike-like action potentials and the generation of basal tone. Ionic mechanisms underlying this basal ICl(Ca) activity and its nitrergic regulation remain unclear. Recent studies suggest that spontaneous Ca2+ release from sarcoplasmic reticulum (SR) and myosin light chain kinase (MLCK) play important roles. The current study investigated this possibility. Conventional intracellular recordings were performed on circular smooth muscle of opossum LES. Nerve responses were evoked by electrical square wave pulses of 0.5 ms duration at 20 Hz. In the presence of nifedipine (1 ,M), substance P (1 ,M), atropine (3 ,M) and guanethidine (3 ,M), intracellular recordings demonstrated a resting membrane potential (MP) of ,38.1±0.7 mV (n=25) with spontaneous membrane potential fluctuations (MPfs) of 1,3 mV. Four pulses of nerve stimulation induced slow inhibitory junction potentials (sIJPs) with an amplitude of 6.1±0.3 mV and a half-amplitude duration of 1926±147 ms (n=25). 1H -[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), a specific guanylyl cyclase inhibitor, abolished sIJPs, but had no effects on MPfs. Caffeine, a ryanodine receptor agonist, hyperpolarized MP and abolished sIJPs and MPfs. Ryanodine (20 ,M) inhibited the sIJP and induced biphasic effects on MP, an initial small hyperpolarization followed by a large depolarization. sIJPs and MPfs were also inhibited by cyclopiazonic acid, an SR Ca2+ ATPase inhibitor. Specific ICl(Ca) and MLCK inhibitors hyperpolarized the MP and inhibited MPfs and sIJPs. These data suggest that (1) spontaneous release of Ca2+ from the SR activates ICl(Ca), which in turn contributes to resting membrane potential; (2) MLCK is involved in activation of ICl(Ca); (3) inhibition of ICl(Ca) is likely to underlie sIJPs induced by nitrergic innervation. British Journal of Pharmacology (2003) 140, 1097,1107. doi:10.1038/sj.bjp.0705537 [source]


    Activation and potentiation of the NO/cGMP pathway by NG -hydroxyl- L -arginine in rabbit corpus cavernosum under normoxic and hypoxic conditions and ageing

    BRITISH JOURNAL OF PHARMACOLOGY, Issue 1 2003
    Javier Angulo
    When nitric oxide synthase (NOS) produces NO from NG -hydroxy- L -arginine (OH-arginine) instead of L -arginine, the total requirement of molecular oxygen and NADPH to form NO is reduced. The aim of this work was to evaluate the effects of OH-arginine on the contractility of rabbit corpus cavernosum (RCC) and to compare the capacities of L -arginine and OH-arginine to enhance NO-mediated responses under normoxic and hypoxic conditions and in ageing, as models of defective NO production. OH-arginine, but not L -arginine, was able to relax phenylephrine-contracted rabbit trabecular smooth muscle. OH-arginine-induced relaxation was inhibited by the NOS-inhibitor, L -NNA (300 ,M), and by the guanylyl cyclase inhibitor, ODQ (20 ,M), while it was not affected by the cytochrome P450 oxygenase inhibitor, miconazole (0.1 mM). Administration of OH-arginine, but not L -arginine, produced a significant increment of cGMP accumulation in RCC tissue. Relaxation elicited by OH-arginine (300 ,M) was still observed at low oxygen tension. The increase of cGMP levels induced by ACh (30 ,M) in RCC was significantly enhanced by addition of OH-arginine (300 ,M) in normoxic conditions, as well as under hypoxia, while L -arginine did not alter the effects of ACh on cGMP accumulation. Endothelium-dependent and nitrergic nerve-mediated relaxations were both significantly reduced in RCC from aged animals (>20-months-old) when compared with young adult rabbits (5-months-old). Treatment with OH-arginine (300 ,M) significantly potentiated endothelium-dependent and neurogenic relaxation in corpus cavernosum from aged rabbits, while L -arginine (300 ,M) did not have significant effects. Results show that OH-arginine promotes NO-mediated relaxation of RCC and potentiates the NO-mediated responses induced by stimulation of endogenous NO generation in hypoxic and aged tissues. We propose that the use of OH-arginine could be of interest in the treatment of erectile dysfunction, at least in those secondary to defective NO production. British Journal of Pharmacology (2003) 138, 63,70. doi:10.1038/sj.bjp.0705027 [source]


    Transgenic neuronal nitric oxide synthase expression induces axotomy-like changes in adult motoneurons

    THE JOURNAL OF PHYSIOLOGY, Issue 18 2010
    Fernando Montero
    Dysregulation of protein expression, function and/or aggregation is a hallmark of a number of neuropathological conditions. Among them, upregulation and/or de novo expression of the neuronal isoform of nitric oxide (NO) synthase (nNOS) commonly occurs in diverse neurodegenerative diseases and in axotomized motoneurons. We used adenoviral (AVV) and lentiviral (LVV) vectors to study the effects of de novo nNOS expression on the functional properties and synaptic array of motoneurons. AVV-nNOS injection into the genioglossus muscle retrogradely transduced neonatal hypoglossal motoneurons (HMNs). Ratiometric real-time NO imaging confirmed that transduced HMNs generated NO gradients in brain parenchyma (space constant: ,12.3 ,m) in response to a glutamatergic stimulus. Unilateral AVV-nNOS microinjection in the hypoglossal nucleus of adult rats induced axotomy-like changes in HMNs. Specifically, we found alterations in axonal conduction properties and the recruitment order of motor units and reductions in responsiveness to synaptic drive and in the linear density of synaptophysin-positive puncta opposed to HMN somata. Functional alterations were fully prevented by chronic treatment with nNOS or soluble guanylyl cyclase inhibitors. Synaptic and functional changes were also completely avoided by prior intranuclear injection of a neuron-specific LVV system for miRNA-mediated nNOS knock-down (LVV-miR-shRNA/nNOS). Furthermore, synaptic and several functional changes evoked by XIIth nerve injury were to a large extent prevented by intranuclear administration of LVV-miR-shRNA/nNOS. We suggest that nNOS up-regulation creates a repulsive NO gradient for synaptic boutons underlying most of the functional impairment undergone by injured motoneurons. This further strengthens the case for nNOS targeting as a plausible strategy for treatment of peripheral neuropaties and neurodegenerative disorders. [source]


    Nitric oxide and cGMP protect the retina from ischemia and mediate somatostatin's neuroprotective effects

    ACTA OPHTHALMOLOGICA, Issue 2009
    K THERMOS
    Purpose The neuropeptide somatostatin has been shown to modulate retinal circuitry by activating its receptors (sst1-sst5) found in retinal neurons and to influence the levels of other neuroactive substances such as nitric oxide (NO) and cGMP. In addition, it displays neuroprotective properties against retinal chemical ischemia and excitotoxicity. In another paradigm, somatostatin was shown to protect cortical cultures against NMDA induced neuronal death via a cGMP mechanism. These findings led us to investigate whether NO and/or cGMP could protect the retina from ischemia, and possibly underlie somatostatin's neuroprotective actions. Methods A model of chemical ischemia was employed in rat retina in order to examine the neuroprotective effects of arginine, the substrate of nitric oxide synthase (NOS), and a number of NO donors. Subsequently, blockade of NOS and guanylyl cyclase in the presence of somatostatin receptor (sst2) agonists was attempted to investigate the role of NO/cGMP in somatostatin's protection of the retina in the chemical ischemia model and in a model of AMPA induced excitotoxicity. Results The NO donors SIN-1 and NONOate and 8-Br-cGMP protected the retina in a concentration-dependent manner, as shown by ChAT immunoreactivity and TUNEL staining. L-cysteine (the peroxynitrite scavenger) partially reduced the SIN-1 protective effect. NOS and guanyl cyclase inhibitors reversed the protective effect of sst2 agonists in the chemical ischemia and excitotoxicity model. Conclusion NO/peroxynitrite and cGMP appear to be important mediators in the protection of the retina from chemical ischemia. The NO/sGC/cGMP pathway is involved in the neuroprotective effects of the sst2 ligands in the same model and against AMPA excitotoxic insults. [source]