Current-clamp Recordings (current-clamp + recording)

Distribution by Scientific Domains

Kinds of Current-clamp Recordings

  • whole-cell current-clamp recording

  • Selected Abstracts

    A novel role for MNTB neuron dendrites in regulating action potential amplitude and cell excitability during repetitive firing

    Richardson N. Lećo
    Abstract Principal cells of the medial nucleus of the trapezoid body (MNTB) are simple round neurons that receive a large excitatory synapse (the calyx of Held) and many small inhibitory synapses on the soma. Strangely, these neurons also possess one or two short tufted dendrites, whose function is unknown. Here we assess the role of these MNTB cell dendrites using patch-clamp recordings, imaging and immunohistochemistry techniques. Using outside-out patches and immunohistochemistry, we demonstrate the presence of dendritic Na+ channels. Current-clamp recordings show that tetrodotoxin applied onto dendrites impairs action potential (AP) firing. Using Na+ imaging, we show that the dendrite may serve to maintain AP amplitudes during high-frequency firing, as Na+ clearance in dendritic compartments is faster than axonal compartments. Prolonged high-frequency firing can diminish Na+ gradients in the axon while the dendritic gradient remains closer to resting conditions; therefore, the dendrite can provide additional inward current during prolonged firing. Using electron microscopy, we demonstrate that there are small excitatory synaptic boutons on dendrites. Multi-compartment MNTB cell simulations show that, with an active dendrite, dendritic excitatory postsynaptic currents (EPSCs) elicit delayed APs compared with calyceal EPSCs. Together with high- and low-threshold voltage-gated K+ currents, we suggest that the function of the MNTB dendrite is to improve high-fidelity firing, and our modelling results indicate that an active dendrite could contribute to a ,dual' firing mode for MNTB cells (an instantaneous response to calyceal inputs and a delayed response to non-calyceal dendritic excitatory postsynaptic potentials). [source]

    Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive

    Margaret Barnes-Davies
    Abstract Principal neurons of the lateral superior olive (LSO) detect interaural intensity differences by integration of excitatory projections from ipsilateral bushy cells and inhibitory inputs from the medial nucleus of the trapezoid body. The intrinsic membrane currents active around firing threshold will form an important component of this binaural computation. Whole cell patch recording in an in vitro brain slice preparation was employed to study conductances regulating action potential (AP) firing in principal neurons. Current-clamp recordings from different neurons showed two types of firing pattern on depolarization, one group fired only a single initial AP and had low input resistance while the second group fired multiple APs and had a high input resistance. Under voltage-clamp, single-spiking neurons showed significantly higher levels of a dendrotoxin-sensitive, low threshold potassium current (ILT). Block of ILT by dendrotoxin-I allowed single-spiking cells to fire multiple APs and indicated that this current was mediated by Kv1 channels. Both neuronal types were morphologically similar and possessed similar amounts of the hyperpolarization-activated nonspecific cation conductance (Ih). However, single-spiking cells predominated in the lateral limb of the LSO (receiving low frequency sound inputs) while multiple-firing cells dominated the medial limb. This functional gradient was mirrored by a medio-lateral distribution of Kv1.1 immunolabelling. We conclude that Kv1 channels underlie the gradient of LSO principal neuron firing properties. The properties of single-spiking neurons would render them particularly suited to preserving timing information. [source]

    Activation of a calcium entry pathway by sodium pyrithione in the bag cell neurons of Aplysia

    Ronald J. Knox
    Abstract The ability of sodium pyrithione (NaP), an agent that produces delayed neuropathy in some species, to alter neuronal physiology was accessed using ratiometric imaging of cytosolic free Ca2+ concentration ([Ca2+]i) in fura PE-filled cultured Aplysia bag cell neurons. Bath-application of NaP evoked a [Ca2+]i elevation in both somata and neurites with an EC50 of ,300 nM and a Hill coefficient of ,1. The response required the presence of external Ca2+, had an onset of 3,5 min, and generally reached a maximum within 30 min. 2-Methyl-sulfonylpyridine, a metabolite and close structural analog of NaP, did not elevate [Ca2+]i. Under whole-cell current-clamp recording, NaP produced a ,14 mV depolarization of resting membrane potential that was dependent on external Ca2+. These data suggested that NaP stimulates Ca2+ entry across the plasma membrane. To minimize the possibility that a change in cytosolic pH was the basis for NaP-induced Ca2+ entry, bag cell neuron intracellular pH was estimated with the dye 2,,7,-bis(carboxyethyl-5(6)-carboxy-fluorescein acetoxy methylester. Exposure of the neurons to NaP did not alter intracellular pH. The slow onset and sustained nature of the NaP response suggested that a cation exchange mechanism coupled either directly or indirectly to Ca2+ entry could underlie the phenomenon. However, neither ouabain, a Na+/K+ ATPase inhibitor, nor removal of extracellular Na+, which eliminates Na+/Ca2+ exchanger activity, altered the NaP-induced [Ca2+]i elevation. Finally, the possibility that NaP gates a Ca2+ -permeable ion channel in the plasma membrane was examined. NaP did not appear to activate two major forms of bag cell neuron Ca2+ -permeable ion channels, as Ca2+ entry was unaffected by inhibition of voltage-gated Ca2+ channels using nifedipine or by inhibition of a voltage-dependent, nonselective cation channel using a high concentration of tetrodotoxin. In contrast, two potential store-operated Ca2+ entry current inhibitors, SKF-96365 and Ni2+, attenuated NaP-induced Ca2+ entry. We conclude that NaP activates a slow, persistent Ca2+ influx in Aplysia bag cell neurons. © 2004 Wiley Periodicals, Inc. J Neurobiol 411,423, 2004 [source]

    Topographical projection from the superior colliculus to the nucleus of the brachium of the inferior colliculus in the ferret: convergence of visual and auditory information

    Timothy P. Doubell
    Abstract The normal maturation of the auditory space map in the deeper layers of the ferret superior colliculus (SC) depends on signals provided by the superficial visual layers, but it is unknown where or how these signals influence the developing auditory responses. Here we report that tracer injections in the superficial layers label axons with en passant and terminal boutons, both in the deeper layers of the SC and in their primary source of auditory input, the nucleus of the brachium of the inferior colliculus (nBIC). Electron microscopy confirmed that biocytin-labelled SC axons form axodendritic synapses on nBIC neurons. Injections of biotinylated dextran amine in the nBIC resulted in anterograde labelling in the deeper layers of the SC, as well as retrogradely labelled superficial and deep SC neurons, whose distribution varied systematically with the rostrocaudal placement of the injection sites in the nBIC. Topographical order in the projection from the SC to the ipsilateral nBIC was confirmed using fluorescent microspheres. We demonstrated the existence of functional SC-nBIC connections by making whole-cell current-clamp recordings from young ferret slices. Both monosynaptic and polysynaptic EPSPs were generated by electrical stimulation of either the superficial or deep SC layers. In addition to unimodal auditory units, both visual and bimodal visual,auditory units were recorded in the nBIC in vivo and their incidence was higher in juvenile ferrets than in adults. The SC-nBIC circuit provides a potential means by which visual and other sensory or premotor signals may be delivered to the nBIC to calibrate the representation of auditory space. [source]

    Role of Ca2+ -Activated Cl, Current in Ventricular Action Potentials of Sheep During Adrenoceptor Stimulation

    Arie O. Verkerk
    Adrenoceptor stimulation enhances repolarising and depolarising membrane currents to different extents in cardiac myocytes. We investigated the opposing effects of the repolarising Ca2+ -activated Cl, current (ICl(Ca)) and depolarising L-type Ca2+ current (ICa,L) on the action potential configuration of sheep ventricular myocytes stimulated with noradrenaline. Whole-cell current-clamp recordings revealed that noradrenaline accelerated and prolonged phase-1 repolarisation. We define the minimal potential at the end of phase-1 repolarisation as ,notch level'. Noradrenaline (1 ,M) caused the notch level to fall from 14 ± 2.6 to 7.8 ± 2.8 mV (n= 24), but left action potential duration, resting membrane potential or action potential amplitude unaffected. Whole-cell voltage-clamp recordings showed that 1 ,M noradrenaline increased both ICa,L and ICl(Ca), but it had no significant effect on the principal K+ currents. Blockage of ICl(Ca) by 0.5 mM 4,4,-diisothiocyanatostilbene-2,2,-disulphonic acid (DIDS) in both the absence and the presence of noradrenaline abolished phase-1 repolarisation. In the presence of noradrenaline, DIDS caused elevation of the plateau phase amplitude and an increase in the action potential duration. In conclusion, elevation of the plateau phase amplitude and action potential prolongation associated with an increased ICa,L upon adrenoceptor stimulation is prevented by an increased ICl(Ca) in sheep ventricular myocytes. [source]

    Nesfatin-1 Influences the Excitability of Paraventricular Nucleus Neurones

    C. J. Price
    Nesfatin-1 is a newly-discovered satiety peptide found in several nuclei of the hypothalamus, including the paraventricular nucleus. To begin to understand the physiological mechanisms underlying these satiety-inducing actions, we examined the effects of nesfatin-1 on the excitability of neurones in the paraventricular nucleus. Whole-cell current-clamp recordings from rat paraventricular nucleus neurones showed nesfatin-1 to have either hyperpolarising or depolarising effects on the majority of neurones tested. Both types of response were observed in neurones irrespective of classification based on electrophysiological fingerprint (magnocellular, neuroendocrine or pre-autonomic) or molecular phenotype (vasopressin, oxytocin, corticotrophin-releasing hormone, thyrotrophin-releasing hormone or vesicular glutamate transporter), determined using single cell reverse transcription-poylmerase chain reaction. Consequently, we provide the first evidence that this peptide, which is produced in the paraventricular nucleus, has effects on the membrane potential of a large proportion of different subpopulations of neurones located in this nucleus, and therefore identify nesfatin-1 as a potentially important regulator of paraventricular nucleus output. [source]