Home About us Contact | |||
Culture Experiments (culture + experiment)
Kinds of Culture Experiments Selected AbstractsDevelopment of micropost force sensor array with culture experiments for determination of cell traction forcesCYTOSKELETON, Issue 7 2007Bin Li Abstract Cell traction forces (CTFs) are critical for cell motility and cell shape maintenance. As such, they play a fundamental role in many biological processes such as angiogenesis, embryogenesis, inflammation, and wound healing. To determine CTFs at the sub-cellular level with high sensitivity, we have developed high density micropost force sensor array (MFSA), which consists of an array of vertically standing poly(dimethylsiloxane) (PDMS) microposts, 2 ,m in diameter and 6 ,m in height, with a center-to-center distance of 4 ,m. In combination with new image analysis algorithms, the MFSA can achieve a spatial resolution of 40 nm and a force sensitivity of 0.5 nN. Culture experiments with various types of cells showed that this MFSA technology can effectively determine CTFs of cells with different sizes and traction force magnitudes. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samplesENVIRONMENTAL MICROBIOLOGY, Issue 1 2005Odile Basso Summary Our knowledge of the microbial characteristics of deep subsurface waters is currently very limited, mainly because of the methods used to collect representative microbial samples from such environments. In order to improve this procedure, a protocol designed to remove the unspecific, contaminant biofilm present on the walls of an approximately 800 m deep well is proposed. This procedure included extensive purges of the well, a mechanical cleaning of its wall, and three successive chlorine injections to disinfect the whole line before sampling. Total bacterial counts in water samples decreased from 2.5 × 105 to 1.0 × 104 per millilitre during the cleaning procedure. Culture experiments showed that the first samples were dominated by sulfate-reducers and heterotrophs, whereas the final sample was dominated by oligotrophic and hydrogenotrophic bacteria. Community structures established on the diversity of the 16S rRNA genes and data analysis revealed that the water sample collected, after a purge without removal of the biofilm, was characterized by numerous phyla which are not representative of the deep subsurface water. On the other hand, several bacterial phyla were only detected after the full cleaning of the well, and were considered as important components of the subsurface ecosystem which would have been missed in the absence of well cleaning. [source] Trichoderma enzymes promote Fibrobacter succinogenes S85 adhesion to, and degradation of, complex substrates but not pure cellulose,JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 10 2004Diego P Morgavi Abstract The effects of an enzyme preparation from Trichoderma longibrachiatum (TE) on adhesion and growth of the fibrolytic rumen bacterium Fibrobacter succinogenes S85 was studied to gain a better understanding of the action of feed enzyme additives on fibre digestion by ruminants. Adhesion experiments were performed on crystalline cellulose, corn silage and alfalfa hay. Adhesion of F succinogenes to cellulose was negatively related to the concentration of TE (p < 0.05). At the highest concentration used, TE reduced adhesion to cellulose from 65 to 39%. For corn silage and alfalfa hay, TE stimulated adhesion at low levels (p < 0.05) but this effect was lost at higher levels. Culture experiments were performed on crystalline cellulose and corn silage. The presence of TE in media containing cellulose failed to increase substrate disappearance or gas production although it increased numbers of non-adherent bacteria (p < 0.05). When corn silage was used, the addition of TE increased NDF disappearance (p < 0.05) at 24 and 48 h (33 and 52% in controls versus 53 and 65% in TE treatments). Growth rate and gas production were also stimulated (p < 0.05). We conclude that, for cellulose, the hydrolytic enzymes in TE obstructed available binding sites decreasing bacterial adherence. Fibrobacter succinogenes digested cellulose efficiently and addition of exogenous cellulases did not further increase substrate disappearance. However, for complex plant substrates, low concentration of TE increased bacterial adhesion and plant (corn) fiber degradation. For the Department of Agriculture and Agri-Food, Government of Canada, © Minister of Public Works and Government Services Canada 2004. Published for SCI by John Wiley & Sons, Ltd. [source] Photobiont Selectivity and Interspecific Interactions in Lichen Communities.PLANT BIOLOGY, Issue 4 2003Abstract: Lichen communities are characterised by interspecific interactions that not only include interactions between different lichen species but also between the symbionts within a single lichen species. The community "Bunte Erdflechtengesellschaft", growing on weathered calciferous rocks known as Gravel Alvar on Gotland (Baltic Sea, Sweden), shows a high complexity of inter- and intraspecific interactions, including Fulgensia bracteata, F. fulgens, Toninia sedifolia, Squamarina cartilaginea, Psora decipiens and Lecidea lurida. F. bracteata and F. fulgens are the dominant species of this community, showing a tendency to overgrow the other species involved and even parasitic behaviour. Culture experiments have been performed to investigate the selectivity of the mycobiont of F. bracteata towards a variety of potential photobionts. The results provide evidence for the selectivity of the mycobiont and varying compatibility of the respective symbionts that can be interpreted as a cascade of interdependent processes of specific and non-specific reactions of the symbionts involved. [source] Hide, rest or die: a light-mediated diapause response in Daphnia magna to the threat of fish predationFRESHWATER BIOLOGY, Issue 1 2005Miros, lusarczyk Summary 1. In a laboratory batch culture experiment, a diapause response of Daphnia magna to a simulated threat of fish predation was tested at various light intensities, which under natural conditions determine potential vulnerability of Daphnia to visual planktivorous fish. 2. Under moderate light intensity (1.4 ,mol m,2 s,1) that allows effective predation by fish, the proportion of females producing dormant eggs was significantly higher than under dim light conditions (0.001 ,mol m,2 s,1) that are not favourable for visual detection of prey. Production of dormant eggs was not observed in complete darkness or in treatments missing fish kairomones, irrespective of tested light conditions. 3. The observed phenomenon is interpreted as a flexible response of prey to the conditional risk of predation assessed by Daphnia according to the presence of fish-derived cues on the one hand and the presence of dark refugia on the other. Irrespective of the presence of fish kairomones, Daphnia may not produce resting eggs as long as a safe, dark, bottom zone is accessible. [source] Preparation and properties of ionically cross-linked chitosan nanoparticlesPOLYMERS FOR ADVANCED TECHNOLOGIES, Issue 7 2009Hui Liu Abstract Chitosan nanoparticles were fabricated by a method of tripolyphosphate (TPP) cross-linking. The influence of fabrication conditions on the physical properties and drug loading and release properties was investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS), and UV,vis spectroscopy. The nanoparticles could be prepared only within a zone of appropriate chitosan and TPP concentrations. The particle size and surface zeta potential can be manipulated by variation of the fabrication conditions such as chitosan/TPP ratio and concentration, solution pH and salt addition. TEM observation revealed a core,shell structure for the as-prepared nanoparticles, but a filled structure for the ciprofloxacin (CH) loaded particles. Results show that the chitosan nanoparticles were rather stable and no cytotoxicity of the chitosan nanoparticles was found in an in vitro cell culture experiment. Loading and release of CH can be modulated by the environmental factors such as solution pH and medium quality. Copyright © 2008 John Wiley & Sons, Ltd. [source] Effects of amino nitrogen on fermentation parameters by mixed ruminal microbes when energy or nitrogen is limitedANIMAL SCIENCE JOURNAL, Issue 2 2007Hiroshi KAJIKAWA ABSTRACT Ruminal microbes harvested from a ruminally fistulated cow were incubated in simple batch and semicontinuous cultures with NH3 -N or amino-N on nitrogen- or energy-excess diets in quantity (HN and LN diets, respectively, consisting of timothy hay plus soybean meal, or corn grain), based on evaluation with the National Research Council and Cornell Net Carbohydrate and Protein System models. In a batch culture experiment, supplementation with amino-N promoted digestion and fermentation in the course of incubation (4,24 h) on both diets, but these effects mostly disappeared when the diets were sufficiently digested (at 48 h). In a semicontinuous culture experiment using Rusitec, no effect of amino-N was exhibited after sufficient fermentation and digestion, but significant promotion of digestion was shown in the course of incubation on the HN diet, while no such effect was detected on the LN diet. The microbial yield for 24 h did not show a significant difference between the N sources of either of the two diets. These results suggest that the stimulatory effects of amino-N are diminished when the diets are sufficiently digested after a long retention and incubation, and also that the effectiveness of amino-N does not require a quantitatively energy-excess status. [source] Impact of spectral composition on larval haddock, Melanogrammus aeglefinus L., growth and survivalAQUACULTURE RESEARCH, Issue 4 2002Gavin Downing Abstract In a small-scale culture experiment, larval haddock, Melanogrammus aeglefinus L., were raised under various combinations of light quality [blue (470 nm), green (530 nm) or full-spectrum white light] and light intensity [low (0.3,0.4 µmol s,1 m,2) or high (1.7,1.9 µmol s,1 m,2)], and in total darkness (both fed, and starved). Larval growth (0.9% day,1 in standard length; 2.4% day,1 in body area) was not significantly different between any combination of coloured light. At the time of total mortality in the starved treatment, survival was significantly reduced under low intensity, full-spectrum white light (13%) vs. all other coloured light treatments (68%). Larvae raised under both continuous dark treatments (fed and starved) exhibited morphological changes associated with irreversible starvation (point-of-no-return). Lack of a pronounced effect of light quality on larval haddock growth probably results from a combination of plasticity in early larval vision, and enhanced encounter rates between larvae and prey at the relatively high prey densities used in aquaculture. [source] Development of micropost force sensor array with culture experiments for determination of cell traction forcesCYTOSKELETON, Issue 7 2007Bin Li Abstract Cell traction forces (CTFs) are critical for cell motility and cell shape maintenance. As such, they play a fundamental role in many biological processes such as angiogenesis, embryogenesis, inflammation, and wound healing. To determine CTFs at the sub-cellular level with high sensitivity, we have developed high density micropost force sensor array (MFSA), which consists of an array of vertically standing poly(dimethylsiloxane) (PDMS) microposts, 2 ,m in diameter and 6 ,m in height, with a center-to-center distance of 4 ,m. In combination with new image analysis algorithms, the MFSA can achieve a spatial resolution of 40 nm and a force sensitivity of 0.5 nN. Culture experiments with various types of cells showed that this MFSA technology can effectively determine CTFs of cells with different sizes and traction force magnitudes. Cell Motil. Cytoskeleton 2007. © 2007 Wiley-Liss, Inc. [source] Drosophila multiplexin (Dmp) modulates motor axon pathfinding accuracyDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5 2009Frauke Meyer Multiplexins are multidomain collagens typically composed of an N-terminal thrombospondin-related domain, an interrupted triple helix and a C-terminal endostatin domain. They feature a clear regulatory function in the development of different tissues, which is chiefly conveyed by the endostatin domain. This domain can be found in proteolytically released monomeric and trimeric versions, and their diverse and opposed effects on the migratory behavior of epithelial and endothelial cell types have been demonstrated in cell culture experiments. The only Drosophila multiplexin displays specific features of both vertebrate multiplexins, collagens XV and XVIII. We characterized the Drosophila multiplexin (dmp) gene and found that three main isoforms are expressed from it, one of which is the monomeric endostatin version. Generation of dmp deletion alleles revealed that Dmp plays a role in motor axon pathfinding, as the mutants exhibit ventral bypass defects of the intersegmental nerve b (ISNb) similar to other motor axon guidance mutants. Transgenic overexpression of monomeric endostatin as well as of full-length Dmp, but not trimeric endostatin, were able to rescue these defects. In contrast, trimeric endostatin increased axon pathfinding accuracy in wild type background. We conclude that Dmp plays a modulating role in motor axon pathfinding and may be part of a buffering system that functions to avoid innervation errors. [source] Proliferation and differentiation of intestinal stem cells during metamorphosis of the red flour beetle, Tribolium castaneumDEVELOPMENTAL DYNAMICS, Issue 4 2008R. Parthasarathy Abstract The insect midgut epithelium is remodeled during larval-pupal metamorphosis when larval polyploid cells (LPCs) are replaced by the daughters of intestinal stem cells (ISCs). We characterized the proliferation of ISCs during midgut remodeling in the red flour beetle, Tribolium castaneum. Midgut remodeling is initiated at 96 hr after ecdysis into the final instar larval stage. Immunocytochemistry with bromodeoxyuridine and phospho-histone H3 antibodies showed that the ISCs are the progenitors of the pupal/adult midgut epithelium and they undergo proliferation and differentiation to form new midgut epithelium. In vitro midgut culture experiments revealed that 20-hydroxyecdysone (20E) in the absence of juvenile hormone induces proliferation of ISCs. RNA interference (RNAi) mediated silencing of ecdysone receptors (EcRA and EcRB) and ultraspiracle (USP) identified EcRA and USP but not EcRB as the proteins involved in 20E regulation of ISCs proliferation. These data show that the proliferation of ISCs is under both developmental and endocrine regulation. Developmental Dynamics 237:893,908, 2008. © 2008 Wiley-Liss, Inc. [source] Functional analysis of murine CBF1 during Drosophila developmentDEVELOPMENTAL DYNAMICS, Issue 4 2006Markus Kaspar Abstract Transcription factors of the CSL family are the main mediators of the Notch signalling pathway. The CSL factor in Drosophila is called Suppressor of Hairless (Su(H)) and it has been shown that it acts as a transcriptional repressor in the absence of a Notch signal and as a transcriptional activator in its presence in several developmental contexts. Furthermore, recent data suggest that Su(H) can also activate and maintain transcription of some target genes in a Notch-independent manner. However, although it has been shown that the mammalian CSL ortholog, CBF1, acts as a repressor of transcription in cell culture experiments, so far in vivo evidence for such a function has been lacking. Moreover, it is not known whether CBF1 can activate transcription in a Notch-independent manner, just like Su(H). Here we have investigated these questions by introducing murine CBF1 (mCBF1) and asked whether it can functionally replace Su(H) during Drosophila development. We found that this is indeed the case. We show that mCBF1 can act as a repressor of transcription and can activate and maintain the expression of some target genes in a Notch-independent manner. Our results, therefore, indicate that CBF1 can exert these functions also in its normal context, that is during mammalian development. Developmental Dynamics 235:918,927, 2006. © 2006 Wiley-Liss, Inc. [source] Pax3 and Dach2 positive regulation in the developing somiteDEVELOPMENTAL DYNAMICS, Issue 3 2002G. Kardon Abstract In vertebrates, skeletal muscles of the body arise from cells of somitic origin. Recently, somite culture experiments have identified a set of genes, including Pax3, Six1, Eya2, and Dach2, that appear to play an important role in early myogenesis during somite development (Heanue et al. [1999] Genes Dev. 13:3231,3243). In somite culture Pax3, Six1, Eya2, and Dach2 not only function to activate myogenesis, but they form a complex network regulating each other's transcription. We sought to examine whether this putative Pax3/Six1/Eya2/Dach2 network of regulation actually functions in vivo. In particular, we tested whether Pax3 and Dach2 participate in a positive regulatory feedback loop in vivo as they do in culture. To test in vivo Pax3/Dach2 interregulation, we took advantage of the known dependence of both factors on ectodermal signals. Somites isolated from the overlying ectoderm lose expression of Pax3 and Dach2. Therefore, we attempted to rescue Pax3 or Dach2 expression in somites isolated from the ectoderm by retroviral misexpression of the complementary factor. Indeed misexpression of Pax3 or Dach2 resulted in rescue of Dach2 or Pax3, respectively. These rescue experiments demonstrate that Pax3 and Dach2 positively regulate each other's expression in vivo and support the validity of the Pax3/Six1/Eya2/Dach 2 network in regulating myogenesis. © 2002 Wiley-Liss, Inc. [source] A molecular assessment of the iron stress response in the two phylogenetic clades of TrichodesmiumENVIRONMENTAL MICROBIOLOGY, Issue 1 2010P. Dreux Chappell Summary Trichodesmium spp. play key roles in global carbon and nitrogen budgets and thus defining what controls their productivity is important for understanding climate change. While iron availability has been shown to be an important chemical factor for controlling both growth and nitrogen fixation rates in Trichodesmium, all culture experiments to date have focused solely on representatives from one clade of Trichodesmium. Genomic sequence analysis determined that the Trichodesmium erythraeum (IMS101) genome contains many of the archetypical genes involved in the prokaryotic iron stress response. Focusing on three of these genes, isiB, idiA and feoB, we found that all three showed an iron stress response in axenic T. erythraeum (IMS101), and their sequences were well conserved across four species in our Trichodesmium culture collection [consisting of two T. erythraeum strains (IMS101 and GBRTRLI101), two Trichodesmium tenue strains (Z-1 and H9-4), Trichodesmium thiebautii and Trichodesmium spiralis]. With clade-specific quantitative PCR (qPCR) primers for one of these genes, isiB, we found that high isiB expression at low Fe levels corresponded to specific reductions in N2 fixation rates in both major phylogenetic clades of Trichodesmium (the T. erythraeum clade and T. tenue clade). With regard to the two clades, the most significant difference determined was temperature optima, while more subtle differences in growth, N2 fixation rate and gene expression responses to Fe stress were also observed. However the apparent conservation of the Fe stress response in the Trichodesmium genus suggests that it is an important adaptation for their niche in the oligotrophic ocean. [source] Antimony biomethylation in culture media revisited in the light of solubility and chemical speciation considerationsENVIRONMENTAL TOXICOLOGY, Issue 5 2010Montserrat Filella Abstract Laboratory culture experiments have shown that antimony biomethylation can result from bacterial and fungal activity under both aerobic and anaerobic conditions. However, in the light of our current knowledge of antimony solubility and equilibria, critical analysis of the conditions used in published laboratory studies reveals that solution chemistry was generally overlooked and oversaturated solutions were used. As a result, it is very difficult, if not impossible, to establish reliable observed effect-concentration relationships in the experiments published. © 2010 Wiley Periodicals, Inc. Environ Toxicol 2010. [source] Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Filler,ADVANCED ENGINEERING MATERIALS, Issue 7 2010Wojciech Chrzanowski Abstract Understanding tissue response to materials, to enable modulation and guided tissue regeneration is one of the main challenges in biomaterials science. Nowadays polymers, glasses, and metals dominate as biomaterials. Often native properties of those materials are not sufficient and there is a need to combine them, so as to modify and adjust their properties to the application. The primary aim of this study was to improve cell response to polymer (PLDL) using phosphate glass as filler (titanium doped phosphate glass). As a control ,-tricalcium phosphate (TCP) filler was used. Various concentrations of the filler were used (10,40 vol%). Wetting behavior, , -potentials, mechanical and thermal properties, and human cells response to the materials were evaluated. Results showed that with increase in glass filler loading wettability improved, , -potentials dropped, and increase in stiffness of materials was observed. Importantly cell culture experiments showed more developed and well spread cells on the samples with glass content up to 20 vol%. Cells responded much more positively to the glass filled samples than to TCP filled. However, expression of osteocalcin and osteopontin, proteins that indicate formation of the mineralized structures was positive for all the samples including pure PLDL. It was concluded that due to improved wetting behavior, lower , -potentials, and specific chemistry of the glass filler it was possible to alter cells response, improve bioactivity of the polymer, and vary mechanical properties. [source] Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National ParkGEOBIOLOGY, Issue 1 2004Linda L. Jahnke ABSTRACT The molecular and isotopic compositions of lipid biomarkers from cultured filamentous cyanobacteria (Phormidium, also known as Leptolyngbya) have been used to investigate the community and trophic structure of photosynthetic mats from alkaline hot springs of the Lower Geyser Basin at Yellowstone National Park. We studied a shallow-water coniform mat from Octopus Spring (OS) and a submerged, tufted mat from Fountain Paint Pots (FPP) and found that 2-methylhopanepolyols and mid-chain branched methylalkanes were diagnostic for cyanobacteria, whereas abundant wax esters were representative of the green non-sulphur bacterial population. The biomarker composition of cultured Phormidium -isolates varied, but was generally representative of the bulk mat composition. The carbon isotopic fractionation for biomass relative to dissolved inorganic carbon (DIC; ,CO2) for cultures grown with 1% CO2 ranged from 21.4 to 26.1 and was attenuated by diffusion limitation associated with filament aggregation (i.e. cell clumping). Isotopic differences between biomass and lipid biomarkers, and between lipid classes, depended on the cyanobacterial strain, but was positively correlated with overall fractionation. Acetogenic lipids (alkanes and fatty acids) were generally more depleted than isoprenoids (phytol and hopanoids). The ,13CTOC for OS and FPP mats were somewhat heavier than for cultures (,16.9 and ,23.6, respectively), which presumably reflects the lower availability of DIC in the natural environment. The isotopic dispersions among cyanobacterial biomarkers, biomass and DIC reflected those established for culture experiments. The 7-methyl- and 7,11-dimethylheptadecanes were from 9 to 11 depleted relative to the bulk organic carbon, whereas 2-methylhopanols derived from the oxidation-reduction of bacteriohopanepolyol were enriched relative to branched alkanes by approximately 5,7. These isotopic relationships survived with depth and indicated that the relatively heavy isotopic composition of the OS mat resulted from diffusion limitation. This study supports the suggestion that culture studies can establish valid isotopic relationships for interpretation of trophic structure in modern and ancient microbial ecosystems. [source] Evidence of occult HCV genotypes in haemophilic individuals with unapparent HCV mixed infectionsHAEMOPHILIA, Issue 4 2008C. PARODI Summary., Individuals with haemophilia who received non heat-treated factor concentrates were likely to undergo multiple exposures to the hepatitis C virus (HCV). Therefore, HCV mixed-genotype infections might be more frequent in these patients than in the general population. Their prevalence is extremely variable in similar groups of patients tested by different assays due to the fact that currently available genotyping techniques are not suitable to detect multiple HCV genotypes in a viral population. As an HCV viral reservoir, the peripheral blood mononuclear cell (PBMC) might harbor viral variants distinct from the genotypes detected in plasma. We investigated the presence of HCV genotypes in a group of chronically infected haemophilic patients in the PBMC compartment using a non-stimulated cell culture system that allows the detection of the HCV genome in culture supernatants. We compared them to the HCV genotypes found in plasma samples. Cell culture experiments performed with PBMC demonstrated the presence of additional HCV genotypes that were undetected in the corresponding plasma samples with the same genotyping technique. Although mixed infections at HCV genotype level became evident in 5.6% of the patients (16/288), the culture methodology increased the number of HCV infections with multiple genotypes to 62.5% (10/16) (P < 0.0001). Once more, the role of mononuclear cells as HCV viral reservoirs is emphasized. Considering minor strains could influence the outcome of treatment, detection of covert HCV mixed-genotype infections might be essential for choosing the adequate therapeutic regimen. [source] Inhibition of prostaglandin synthesis and actions by genistein in human prostate cancer cells and by soy isoflavones in prostate cancer patientsINTERNATIONAL JOURNAL OF CANCER, Issue 9 2009Srilatha Swami Abstract Soy and its constituent isoflavone genistein inhibit the development and progression of prostate cancer (PCa). Our study in both cultured cells and PCa patients reveals a novel pathway for the actions of genistein, namely the inhibition of the synthesis and biological actions of prostaglandins (PGs), known stimulators of PCa growth. In the cell culture experiments, genistein decreased cyclooxygenase-2 (COX-2) mRNA and protein expression in both human PCa cell lines (LNCaP and PC-3) and primary prostate epithelial cells and increased 15-hydroxyprostaglandin dehydrogenase (15-PGDH) mRNA levels in primary prostate cells. As a result genistein significantly reduced the secretion of PGE2 by these cells. EP4 and FP PG receptor mRNA were also reduced by genistein, providing an additional mechanism for the suppression of PG biological effects. Further, the growth stimulatory effects of both exogenous PGs and endogenous PGs derived from precursor arachidonic acid were attenuated by genistein. We also performed a pilot randomised double blind clinical study in which placebo or soy isoflavone supplements were given to PCa patients in the neo-adjuvant setting for 2 weeks before prostatectomy. Gene expression changes were measured in the prostatectomy specimens. In PCa patients ingesting isoflavones, we observed significant decreases in prostate COX-2 mRNA and increases in p21 mRNA. There were significant correlations between COX-2 mRNA suppression, p21 mRNA stimulation and serum isoflavone levels. We propose that the inhibition of the PG pathway contributes to the beneficial effect of soy isoflavones in PCa chemoprevention and/or treatment. © 2008 Wiley-Liss, Inc. [source] Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibilityJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2009Y. Liu Abstract Polyvinyl alcohol (PVA) hydrogels have been considered potentially suitable for applications as engineered blood vessels because of their structure and mechanical properties. However, PVA's hydrophilicity hinders its capacity to act as a substrate for cell attachment. As a remedy, PVA was blended with chitosan, gelatin, or starch, and hydrogels were formed by subjecting the solutions to freeze-thaw cycles followed by coagulation bath immersion. The structure-property relationships for these hydrogels were examined by measurement of their swelling, rehydration, degradation, and mechanical properties. For the case of pure PVA hydrogels, the equilibrium swelling ratio was used to predict the effect of freeze thaw cycles and coagulation bath on average molecular weights between crosslinks and on mesh size. For all hydrogels, trends for the reswelling ratio, which is indicative of the crosslinked polymer fraction, were consistent with relative tensile properties. The coagulation bath treatment increased the degradation resistance of the hydrogels significantly. The suitability of each hydrogel for cell attachment and proliferation was examined by protein adsorption and bovine vascular endothelial cell culture experiments. Protein adsorption and cell proliferation was highest on the PVA/gelatin hydrogels. This study demonstrates that the potential of PVA hydrogels for artificial blood vessel applications can be improved by the addition of natural polymers, and that freeze-thawing and coagulation bath treatment can be utilized for fine adjustment of the physical characteristics. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009 [source] Gene expression study of Saccharomyces cerevisiae under changing growth conditionsJOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 8 2009Pengcheng Fu Abstract BACKGROUND: DNA microarrays technology has been used to obtain expression profiles of thousands of genes at the same time for a given organism at relatively low costs. While gene expression approaches are being developed which allow holistic analysis of complex biological processes, there exist very few illustrative examples on the integration of large scale modeling and high throughput time course experiments to upgrade the information contents on yeast biology. RESULTS:Saccharomyces cerevisiae cell culture experiments with perturbed growth conditions were designed so that the metabolic states would be shifted from one to another. Microarrays were used to explore changes in gene expression across the entire yeast genome during the perturbation experiments. Changes in transcript abundance in these growth periods were investigated to study the cellular response to different glucose and oxygen supply. Computational results and experimental observations representing the three characteristic metabolic states were compared on the S. cerevisiae metabolic pathways, as well as the visualization platform provided by the metabolic phenotypic phase plane (PhPP) for the gene regulation on cell metabolism and adaptation of cells to environmental changes. CONCLUSIONS: The integrated expression study described reveals that S. cerevisiae cells respond to environmental changes mainly by down-regulating a number of genes to alter the cell metabolism so that the cells adapt to the variations in their growth conditions. Copyright © 2009 Society of Chemical Industry [source] Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer's diseaseJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Kenjiro Ono Abstract Cerebral deposition of amyloid ,-peptide (A,) in the brain is an invariant feature of Alzheimer's disease (AD). A consistent protective effect of wine consumption on AD has been documented by epidemiological studies. In the present study, we used fluorescence spectroscopy with thioflavin T and electron microscopy to examine the effects of wine-related polyphenols (myricetin, morin, quercetin, kaempferol (+)-catechin and (,)-epicatechin) on the formation, extension, and destabilization of ,-amyloid fibrils (fA,) at pH 7.5 at 37°C in vitro. All examined polyphenols dose-dependently inhibited formation of fA, from fresh A,(1,40) and A,(1,42), as well as their extension. Moreover, these polyphenols dose-dependently destabilized preformed fA,s. The overall activity of the molecules examined was in the order of: myricetin = morin = quercetin > kaempferol > (+)-catechin = (,)-epicatechin. The effective concentrations (EC50) of myricetin, morin and quercetin for the formation, extension and destabilization of fA,s were in the order of 0.1,1 µm. In cell culture experiments, myricetin-treated fA, were suggested to be less toxic than intact fA,, as demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Although the mechanisms by which these polyphenols inhibit fA, formation from A,, and destabilize pre-formed fA,in vitro are still unclear, polyphenols could be a key molecule for the development of preventives and therapeutics for AD. [source] Nitric oxide synthase type-II is synthesized by human gingival tissue and cultured human gingival fibroblastsJOURNAL OF PERIODONTAL RESEARCH, Issue 4 2000H. K. Kendall Nitric oxide is known to be an important inflammatory mediator, and is implicated in the pathophysiology of a range of inflammatory disorders. The aim of this study was to determine the localization and distribution of endothelial NOS (NOSII) in human gingival tissue, and to ascertain if human gingival fibroblasts express NOS-II when stimulated with interferon gamma (IFN-,) and bacterial lipopolysaccharide (LPS). The distribution of NOS-II in inflamed and non-inflamed specimens of human gingivae was studied using a monoclonal antibody against nitric oxide synthase II. Cultures of fibroblasts derived from healthy human gingivae were used for the cell culture experiments. The results from immunohistochemical staining of the tissues indicated an upregulation of NOS-II expression in inflamed compared to non-inflamed gingival tissue. Fibroblasts and inflammatory cells within the inflamed connective tissue were positively stained for NOS-II. In addition, basal keratinocytes also stained strongly for NOS-II, in both healthy and inflamed tissue sections. When cultured human gingival fibroblasts were stimulated by INF-, and Porphyromonas gingivalis LPS, NOS-II was more strongly expressed than when the cells were exposed to LPS or IFN-, alone. These data suggest that, as for other inflammatory diseases, NO plays a role in the pathophysiology of periodontitis. [source] FLUORESCENCE-BASED MAXIMAL QUANTUM YIELD FOR PSII AS A DIAGNOSTIC OF NUTRIENT STRESSJOURNAL OF PHYCOLOGY, Issue 4 2001Jean-Paul Parkhill In biological oceanography, it has been widely accepted that the maximum quantum yield of photosynthesis is influenced by nutrient stress. A closely related parameter, the maximum quantum yield for stable charge separation of PSII, (,PSII)m, can be estimated by measuring the increase in fluorescence yield from dark-adapted minimal fluorescence (Fo) to maximal fluorescence (Fm) associated with the closing of photosynthetic reaction centers with saturating light or with a photosynthetic inhibitor such as 3,-(3,4-dichlorophenyl)-1,,1,-dimethyl urea (DCMU). The ratio Fv/Fm (= (Fm, Fo)/Fm) is thus used as a diagnostic of nutrient stress. Published results indicate that Fv/Fm is depressed for nutrient-stressed phytoplankton, both during nutrient starvation (unbalanced growth) and acclimated nutrient limitation (steady-state or balanced growth). In contrast to published results, fluorescence measurements from our laboratory indicate that Fv/Fm is high and insensitive to nutrient limitation for cultures in steady state under a wide range of relative growth rates and irradiance levels. This discrepancy between results could be attributed to differences in measurement systems or to differences in growth conditions. To resolve the uncertainty about Fv/Fm as a diagnostic of nutrient stress, we grew the neritic diatom Thalassiosira pseudonana (Hustedt) Hasle et Heimdal under nutrient-replete and nutrient-stressed conditions, using replicate semicontinuous, batch, and continuous cultures. Fv/Fm was determined using a conventional fluorometer and DCMU and with a pulse amplitude modulated (PAM) fluorometer. Reduction of excitation irradiance in the conventional fluorometer eliminated overestimation of Fo in the DCMU methodology for cultures grown at lower light levels, and for a large range of growth conditions there was a strong correlation between the measurements of Fv/Fm with DCMU and PAM (r2 = 0.77, n = 460). Consistent with the literature, nutrient-replete cultures showed consistently high Fv/Fm (,0.65), independent of growth irradiance. Under nutrient-starved (batch culture and perturbed steady state) conditions, Fv/Fm was significantly correlated to time without the limiting nutrient and to nutrient-limited growth rate before starvation. In contrast to published results, our continuous culture experiments showed that Fv/Fm was not a good measure of nutrient limitation under balanced growth conditions and remained constant (,0.65) and independent of nutrient-limited growth rate under different irradiance levels. Because variable fluorescence can only be used as a diagnostic for nutrient-starved unbalanced growth conditions, a robust measure of nutrient stressed oceanic waters is still required. [source] Salt-resistant and salt-sensitive wheat genotypes show similar biochemical reaction at protein level in the first phase of salt stressJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 4 2006Muhammad Saqib Abstract Salinity has a two-phase effect on plant growth, an osmotic effect due to salts in the outside solution and ion toxicity in a second phase due to salt build-up in transpiring leaves. To elucidate salt-resistance mechanisms in the first phase of salt stress, we studied the biochemical reaction of salt-resistant and salt-sensitive wheat (Triticum aestivum L.) genotypes at protein level after 10 d exposure to 125 mM,NaCl salinity (first phase of salt stress) and the variation of salt resistance among the genotypes after 30 d exposure to 125 mM,NaCl salinity (second phase of salt stress) in solution culture experiments in a growth chamber. The three genotypes differed significantly in absolute and relative shoot and root dry weights after 30 d exposure to NaCl salinity. SARC-1 produced the maximum and 7-Cerros the minimum shoot dry weights under salinity relative to control. A highly significant negative correlation (r2 = ,0.99) was observed between salt resistance (% shoot dry weight under salinity relative to control) and shoot Na+ concentration of the wheat genotypes studied. However, the salt-resistant and salt-sensitive genotypes showed a similar biochemical reaction at the level of proteins after 10 d exposure to 125 mM NaCl. In both genotypes, the expression of more than 50% proteins was changed, but the difference between the genotypes in various categories of protein change (up-regulated, down-regulated, disappeared, and new-appeared) was only 1%,8%. It is concluded that the initial biochemical reaction to salinity at protein level in wheat is an unspecific response and not a specific adaptation to salinity. [source] Gelatin-based photopolymers for bone replacement materialsJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 24 2009Monika Schuster Abstract Gelatin-based monomers were considered as suitable base component for the 3D structuring of potential bone replacement materials by stereolithographic techniques. Different methacrylate-based gelatin derivatives were prepared, whereas a polyethylene glycol modified derivative GP4M turned out to have the highest tolerance toward other monomers. These are essential as they allow the tuning of the photoreactivity and the mechanical properties. Cell culture experiments with osteoblast- and endothelial-like cells confirmed negligible cytotoxicity of these monomers. Finally, we were able to show the possibility of producing arbitrary cellular structures with these gelatin-containing formulations using stereolithography. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009 [source] Development of Electrospun Three-arm Star Poly(, -caprolactone) Meshes for Tissue Engineering ApplicationsMACROMOLECULAR BIOSCIENCE, Issue 8 2010Dario Puppi Abstract We have developed three-dimensional electrospun microfibrous meshes of a novel star branched three-arm poly(, -caprolactone) (*PCL) as potential scaffolds for tissue engineering applications. The processing conditions required to obtain uniform fibers were optimized by studying their influence on fiber morphology and size. Polymer molecular weight and solution feed rate influenced both the mesh microstructure and the tensile properties of the developed mats. Electrospun samples were also tested for their mechanical properties in wet conditions, showing higher yield strength and strain in comparison to that observed in dry conditions. Cell culture experiments employing MC3T3-E1 osteoblast like cells showed good cell viability adhesion and collagen production on the *PCL scaffolds. [source] Effect of temperature on growth of the cyanobacterium Aphanizomenon flos-aquae in Lake Biwa and Lake YogoPHYCOLOGICAL RESEARCH, Issue 4 2001Shigeo Tsujimura SUMMARY The water bloom-forming cyanobacterium Aphanizomenon flos-aquae Ralfs ex Bornet et Flahault (Nos-tocales, Cyanophyceae) appeared in Lake Biwa and Lake Yogo in 1999 for the first time. The morphological characteristics were described using natural samples. In contrast to the other water bloom-forming cyanobacteria such as Microcystis and Anabaena in Lake Biwa and Lake Yogo, the small summer population of A. flos-aquae is apt to grow in winter, suggesting the low temperature preference or tolerance of this species. In order to clarify the effect of temperature on the growth, culture experiments were conducted using an axenic strain isolated from Lake Biwa. The strain could grow at above 8°C with an optimum temperature ranging from 23 to 29°C, and survived even at 5°C for at least 25days under low light conditions. Although these results confirmed the ability of the bloom formation during late autumn and winter, it is still unclear why the Aphanizomenon bloom occurred at temperatures of ca 10°C in December and not immediately after the disappearance of Microcystis and/or Anabaena bloom during autumn. [source] H2/NH3 Plasma-Grafting of PEEK-WC-PU Membrane to Improve their cyto-Compatibility with HepatocytesPLASMA PROCESSES AND POLYMERS, Issue S1 2009Stefania Laera Abstract Plasma treatments in H2 and NH3 RF (13.56 MHz) glow discharges have been used for modifying the surface of PEEK-WC-PU membranes. Water contact angle (WCA) and X-Ray photoelectron spectroscopy (XPS) analyses were performed to study the compositional changes of PEEK-WC-PU membranes after grafting. Cell culture experiments with human hepatocytes clearly show that grafting N-containing groups improves the cyto-compatibility of the membranes. [source] Designing a Three-dimensional Expanded Polytetrafluoroethylene,Poly(lactic-co-glycolic acid) Scaffold for Tissue EngineeringARTIFICIAL ORGANS, Issue 4 2009Hung-Jen Shao Abstract:, The purpose of this study was to design a three-dimensional expanded polytetrafluoroethylene (ePTFE),poly(lactic-co-glycolic acid) (PLGA) scaffold for tissue engineering. To test the feasibility of this composite scaffold, a series of two-dimensional culture experiments were performed to investigate the behavior of anterior cruciate ligament (ACL) cells on the ePTFE and PLGA membranes. It was found PLGA provided a cell-favorable substrate for cell adhesion, migration, and growth, indicating PLGA is an ACL cell-conductive material. Conversely, poor adhesion and proliferation of ACL cells were observed on the ePTFE, even on the collagen-coated ePTFE. Therefore, the scaffold was not fabricated by coating PLGA on the ePTFE surface because it is difficult to coat anything on the extremely hydrophobic ePTFE surface. Instead, the ePTFE embedded in the PLGA matrix was prepared by immersing ePTFE scrim yarns into the PLGA solution, and then precipitating PLGA to form a three-dimensional construction with porous morphology. The role of ePTFE is regarded as a reinforcing constituent to improve the mechanical strength of porous PLGA matrix to provide early repair strength for tissue healing. However, porous PLGA matrix acts as a supportive environment for allowing cell adhesion, migration, and growth to guide the repair and regeneration of ligament tissue. To test this assumption, a preliminary animal experiment of rabbit ACL wound healing with this three-dimensional ePTFE,PLGA scaffold was performed. These results are very encouraging because such a new scaffold made of ePTFE scrim yarns embedded in PLGA may serve as ACL prostheses in the ligament tissue engineering. [source] |