Culture Dishes (culture + dish)

Distribution by Scientific Domains


Selected Abstracts


Tissue Engineering Based on Cell Sheet Technology,

ADVANCED MATERIALS, Issue 20 2007
N. Matsuda
Abstract Cell sheet technology enables novel approaches to tissue engineering without the use of biodegradable scaffolds. Cell sheet technology consists of a temperature-responsive culture dish, which enables reversible cell adhesion to and detachment from the dish surface by controllable hydrophobicity of the surface. This allows for a non-invasive harvest of cultured cells as an intact monolayer cell sheet including deposited extra cellular matrices. The monolayer cell sheet can be transplanted to host tissues without using biodegradable scaffolds and sutures. Thick tissue constructs and patterned cell sheets using two or more kinds of cell source are also developed by means of layered cell sheets in vitro. This Progress Report summarizes temperature-controlled cell adhesion-detachment behavior and applications of the cell sheet technology to regeneration of cornea, periodontal ligament, bladder epithelia, oesophageal epithelia, myocardium, and liver. [source]


Effects of ,-Toxin of Staphylococcus aureus on Ciliary Activity of Nasal Epithelial Cells ,

THE LARYNGOSCOPE, Issue 12 2000
Chung Seop Kim MD
Abstract Objectives To investigate the in vitro effects of staphylococcal ,-to-in on ciliary activity and the in vivo effects on sinusitis induction. Study Design The in vitro effects of staphylococcal ,-to-in on ciliary activity were investigated at different concentrations and e-posure times. E-perimental sinusitis was induced in rabbits with application of ,-to-in and confirmed 7 days later. Methods Ciliated epithelial cells were taken from the ma-illary sinus mucosa of 10 rabbits. Five culture dishes from each rabbit were used for the e-perimental group, and one culture dish from each rabbit was used for the control group. In the experimental group, ciliary beat frequency (CBF) was measured at concentrations of 0.1, 1, 2, 5 and 10 U/mL of ,-toxin using a video-computerized analysis technique, while in the control group, culture medium containing no toxin was used. CBF was measured 1, 2, 4, 6, 8, 12, 24, and 48 hours after administration of ,-toxin. To induce experimental sinusitis, 2 U/mL of ,-toxin was percutaneously applied to the maxillary sinus of 10 rabbits without occlusion of the natural ostium, while normal saline was percutaneously applied to the right-side maxillary sinus of 4 rabbits in the control group. At 7 days, mucosal membranes were taken from the inferomedial wall of the maxillary sinus for light microscopic study. Results CBF dropped significantly after an 8-hour incubation at 2, 5, and 10 U/mL of ,-to-in. No ciliary activity was observed after a 24-hour incubation at 2 and 5 U/mL and a 12-hour incubation at 10 U/mL of ,-to-in. Mucoid, purulent discharge was observed in the ma-illary sinuses of the ,-to-in,applied group. Prominent epithelial disruption and infiltration of inflammatory cells into the epithelium and lamina propria were observed in the ,-to-in,applied group. Conclusions Staphylococcal ,-to-in may reduce ciliary activity and induce sinusitis without occlusion of the natural ostium of the ma-illary sinus in rabbits. This study provides another animal model of sinusitis for understanding the pathogenesis of sinusitis induced by bacterial e-oto-ins. [source]


c-Kit+ Bone Marrow Stem Cells Differentiate into Functional Cardiac Myocytes

CLINICAL AND TRANSLATIONAL SCIENCE, Issue 1 2009
Hajime Kubo Ph.D.
Abstract The utility of bone marrow cells (BMCs) to regenerate cardiac myocytes is controversial. The present study examined the capacity of different types of BMCs to generate functional cardiac myocytes. Isolated c-kit+ BMCs (BMSCs), c-kit+ and crude BMCs from the adult feline femur were membrane stained with PKH26 dye or infected with a control enhanced green fluorescence protein transcript (EGFP)-adenovirus prior to co-culture upon neonatal rat ventricular myocytes (NRVM). Co-cultured cells were immuno-stained for c-kit, ,-tropomyosin, ,-actinin, connexin 43 (C×43) and Ki67 and analyzed with confocal microscopy. Electrophysiology of BMSC derived myocytes were compared to NRVMs within the same culture dish. Gap junction function was analyzed by fluorescence recovery after photo-bleaching (FRAP). BMCs proliferated and differentiated into cardiac myocytes during the first 48 hours of co-culturing. These newly formed cardiac myocytes were able to contract spontaneously or synchronously with neighboring NRVMs. The myogenic rate of c-kit+ BMSCs was significantly greater than c-kit+ and crude BMCs (41.2 ± 2.1, 6.1 ± 1.2, and 17.1 ± 1.5%, respectively). The newly formed cardiac myocytes exhibited an immature electrophysiological phenotype until they became electrically coupled to NRVMs through functional gap junctions. BMSCs did not become functional myocytes in the absence of NRVMs. In conclusion, c-kit+ BMSCs have the ability to transdifferentiate into functional cardiac myocytes. [source]


Tissue Engineering Using Laminar Cellular Assemblies

ADVANCED MATERIALS, Issue 32-33 2009
Joseph Yang
Abstract As proposed in the late 1980s by Langer and Vacanti, the ultimate goal of tissue engineering is the development of structures that can be used to treat or replace damaged or diseased organs and tissues. For the regeneration of various organs such as the heart, liver, and kidney, the development of adequate vascular networks within the engineered tissues remains a significant obstacle in the formation of cell-dense structures that resemble the native parenchyma. While tissue engineering using biodegradable scaffolds has been successful in the re-creation of tissues where extracellular matrix is abundant, we have developed cell-sheet-based tissue engineering for the construction of tissues using laminar assemblies of cells harvested from temperature-responsive culture dishes. Using cell sheet engineering, we present new strategies for the development of organ-like tissue structures containing well-organized vascular networks. [source]


Rice bran protein-based edible films

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 3 2008
Abayomi P. Adebiyi
Summary The development of degradable and edible films from protein sources has drawn significant attention for the utilisation of natural resources as well as for the alleviation of the environmental burden. Rice bran protein (RBP) was applied to protein film preparation in this study. The protein solutions were casted on plastic tissue culture dishes with glycerol as a plasticiser after heat treatment. Functional properties of the films were then measured. The puncture strength (PS) of RBP films increased up to pH 8.0 and then decreased. PS of protein films depends on the degree of protein purity, quality and composition. Higher concentration of glycerol weakened the films. The pH affected the water solubility of RBP films and the films showed least solubility at pH 3.0. RBP could be utilised in the preparation of degradable protein-based films. The RBP-based film had functional properties comparable to those of the soy protein-based ones. [source]


Behavior of hippocampal stem/progenitor cells following grafting into the injured aged hippocampus

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 14 2008
Ashok K. Shetty
Abstract Multipotent neural stem/progenitor cells (NSCs) from the embryonic hippocampus are potentially useful as donor cells to repopulate the degenerated regions of the aged hippocampus after stroke, epilepsy, or Alzheimer's disease. However, the efficacy of the NSC grafting strategy for repairing the injured aged hippocampus is unknown. To address this issue, we expanded FGF-2-responsive NSCs from the hippocampus of embryonic day 14 green fluorescent protein,expressing transgenic mice as neurospheres in vitro and grafted them into the hippocampus of 24-month-old F344 rats 4 days after CA3 region injury. Engraftment, migration, and neuronal/glial differentiation of cells derived from NSCs were analyzed 1 month after grafting. Differentiation of neurospheres in culture dishes or after placement on organotypic hippocampal slice cultures demonstrated that these cells had the ability to generate considerable numbers of neurons, astrocytes, and oligodendrocytes. Following grafting into the injured aged hippocampus, cells derived from neurospheres survived and dispersed, but exhibited no directed migration into degenerated or intact hippocampal cell layers. Phenotypic analyses of graft-derived cells revealed neuronal differentiation in 3%,5% of cells, astrocytic differentiation in 28% of cells, and oligodendrocytic differentiation in 6%,10% cells. The results demonstrate for the first time that NSCs derived from the fetal hippocampus survive and give rise to all three CNS phenotypes following transplantation into the injured aged hippocampus. However, grafted NSCs do not exhibit directed migration into lesioned areas or widespread neuronal differentiation, suggesting that direct grafting of primitive NSCs is not adequate for repair of the injured aged brain without priming the microenvironment. © 2008 Wiley-Liss, Inc. [source]


Glial-guided neuronal migration in P19 embryonal carcinoma stem cell aggregates

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005
Marcelo F. Santiago
Abstract During development of the nervous system, neuronal precursors that originated in proliferative regions migrate along radial glial fibers to reach their final destination. P19 embryonal carcinoma (EC) stem cells exposed to retinoic acid (RA) differentiate into neurons, glia, and fibroblast-like cells. In this work, we induced P19 aggregates for 4 days with RA and plated them onto tissue culture dishes coated with poly-L-lysine. Several cells migrated out of and/or extended processes from the aggregates after 24 hr. Some cell processes were morphologically similar to radial glial fibers and stained for glial fibrillar acidic protein (GFAP) and nestin. Large numbers of migrating cells showed characteristics similar to those of bipolar migrating neurons and expressed the neuronal marker microtubule-associated protein 2. Furthermore, scanning electron microscopy analysis revealed an intimate association between the radial fibers and the migrating cells. Therefore, the migration of neuron-like cells on radial glia fibers in differentiated P19 aggregates resembled some of the migration models used thus far to study gliophilic neuronal migration. In addition, HPTLC analysis in this system showed the expression of 9-O-acetyl GD3, a ganglioside that has been associated with neuronal migration. Antibody perturbation assays showed that immunoblockage of 9-O-acetyl GD3 arrested neuronal migration in a reversible manner. In summary, we have characterized a new cell culture model for investigation of glial-guided neuronal migration and have shown that 9-O-acetyl GD3 ganglioside has an important role in this phenomenon. © 2005 Wiley-Liss, Inc. [source]


State of differentiation defines buccal epithelial cell affinity for cross-linking to Candida albicans Hwp1

JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2007
Gomathinayagam Ponniah
Candida albicans utilizes mammalian cell-associated transglutaminase (TGase) activity to adhere covalently to human buccal epithelial cells (BECs) through Hyphal Wall Protein 1. Little is known about the factors leading to the identity and appearance of Hwp1 binding partners on cells lining the oral cavity. The observation that BECs vary in their ability to attach to C. albicans germ tubes and to bind recombinant Hwp1 (rHwp1) suggested that differentiation may play a role in affinity for germ tube attachment. Individual BECs were characterized for differentiation status and rHwp1 binding. rHwp1 bound to the more terminally differentiated cells displaying SPR3 and keratin 13 but not to less differentiated cells with abundant involucrin. Sequential expression of involucrin followed by SPR3 in oral keratinocytes was demonstrated using stratified organotypic cultures and a feeder layer system with the OKF6/TERT-2 cell line. Increased cross-linking of the lysine analogue 5-(biotinamido)pentylamine to cultured OKF6/TERT-2 cell proteins accompanied this increased expression of SPR3. Western blot analysis demonstrated the presence of rHwp1 cross-links to proteins from BECs or from OKF6/TERT-2 cells that had been mechanically dislodged from culture dishes. Therefore, the differentiation of SPR3 positive from involucrin positive cells is correlated with the acquisition of affinity for cross-linking to rHwp1 and covalent adhesion of germ tubes to BECs. [source]


Anti-DNA Antibodies Cross-reacting with Laminin Inhibit Trophoblast Attachment and Migration: Implications for Recurrent Pregnancy Loss in SLE Patients

AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 3 2000
FAISAL QURESHI
PROBLEM: Systemic lupus erythematosus (SLE), an autoimmune disease, is associated with reduced fetal survival, recurrent abortions, and other pregnancy complications. Some of the autoantibodies found in SLE bind to laminins (LNs), which play an important role in the implantation of the fertilized ovum in humans. METHOD OF STUDY: To elucidate the role of these specific autoantibodies, chorionic villous explants from 6,7-week-old human placentas were established as organ cultures on laminin-1 (LN-1), collagen IV (CN-IV) or uncoated culture dishes. The cultures were then exposed to a mouse monoclonal anti-DNA/anti-LN-1 antibody, to human polyclonal lupus antibodies cross-reacting with LN-1, a function-blocking polyclonal antibody to LN-1, polyclonal antibodies to CN-IV, or IgG control. RESULTS: The explants attached to LN-1 and CN-IV, but not to uncoated culture dishes. LN-1 promoted migration of trophoblast, whereas CN-IV promoted migration of fibroblast-like cells. Trophoblast attachment and migration were abolished in a dose-dependent manner by all three antibodies to LN-1, but not by antibodies to CN-IV or IgG control. Furthermore, the effect of anti-LN antibodies was abolished by preincubating them with LN-1. CONCLUSIONS: These studies suggest that anti-DNA antibodies cross-reacting with LNs may play a role in early pregnancy failure in SLE patients by interfering with placental implantation. [source]


Effects of ,-Toxin of Staphylococcus aureus on Ciliary Activity of Nasal Epithelial Cells ,

THE LARYNGOSCOPE, Issue 12 2000
Chung Seop Kim MD
Abstract Objectives To investigate the in vitro effects of staphylococcal ,-to-in on ciliary activity and the in vivo effects on sinusitis induction. Study Design The in vitro effects of staphylococcal ,-to-in on ciliary activity were investigated at different concentrations and e-posure times. E-perimental sinusitis was induced in rabbits with application of ,-to-in and confirmed 7 days later. Methods Ciliated epithelial cells were taken from the ma-illary sinus mucosa of 10 rabbits. Five culture dishes from each rabbit were used for the e-perimental group, and one culture dish from each rabbit was used for the control group. In the experimental group, ciliary beat frequency (CBF) was measured at concentrations of 0.1, 1, 2, 5 and 10 U/mL of ,-toxin using a video-computerized analysis technique, while in the control group, culture medium containing no toxin was used. CBF was measured 1, 2, 4, 6, 8, 12, 24, and 48 hours after administration of ,-toxin. To induce experimental sinusitis, 2 U/mL of ,-toxin was percutaneously applied to the maxillary sinus of 10 rabbits without occlusion of the natural ostium, while normal saline was percutaneously applied to the right-side maxillary sinus of 4 rabbits in the control group. At 7 days, mucosal membranes were taken from the inferomedial wall of the maxillary sinus for light microscopic study. Results CBF dropped significantly after an 8-hour incubation at 2, 5, and 10 U/mL of ,-to-in. No ciliary activity was observed after a 24-hour incubation at 2 and 5 U/mL and a 12-hour incubation at 10 U/mL of ,-to-in. Mucoid, purulent discharge was observed in the ma-illary sinuses of the ,-to-in,applied group. Prominent epithelial disruption and infiltration of inflammatory cells into the epithelium and lamina propria were observed in the ,-to-in,applied group. Conclusions Staphylococcal ,-to-in may reduce ciliary activity and induce sinusitis without occlusion of the natural ostium of the ma-illary sinus in rabbits. This study provides another animal model of sinusitis for understanding the pathogenesis of sinusitis induced by bacterial e-oto-ins. [source]


Development and optimization of a process for automated recovery of single cells identified by microengraving

BIOTECHNOLOGY PROGRESS, Issue 3 2010
Jae Hyeok Choi
Abstract Microfabricated devices are useful tools for manipulating and interrogating large numbers of single cells in a rapid and cost-effective manner, but connecting these systems to the existing platforms used in routine high-throughput screening of libraries of cells remains challenging. Methods to sort individual cells of interest from custom microscale devices to standardized culture dishes in an efficient and automated manner without affecting the viability of the cells are critical. Combining a commercially available instrument for colony picking (CellCelector, AVISO GmbH) and a customized software module, we have established an optimized process for the automated retrieval of individual antibody-producing cells, secreting desirable antibodies, from dense arrays of subnanoliter containers. The selection of cells for retrieval is guided by data obtained from a high-throughput, single-cell screening method called microengraving. Using this system, 100 clones from a mixed population of two cell lines secreting different antibodies (12CA5 and HYB099-01) were sorted with 100% accuracy (50 clones of each) in ,2 h, and the cells retained viability. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source]