Home About us Contact | |||
Culture Days (culture + day)
Selected AbstractsNitric oxide regulates cell survival in purified cultures of avian retinal neurons: involvement of multiple transduction pathwaysJOURNAL OF NEUROCHEMISTRY, Issue 2 2007T. A. Mejía-García Abstract Nitric oxide (NO) is an important signaling molecule in the CNS, regulating neuronal survival, proliferation and differentiation. Here, we explored the mechanism by which NO, produced from the NO donor S -nitroso-acetyl- d - l -penicillamine (SNAP), exerts its neuroprotective effect in purified cultures of chick retinal neurons. Cultures prepared from 8-day-old chick embryo retinas and incubated for 24 h (1 day in culture, C1) were treated or not with SNAP, incubated for a further 72 h (up to 4 days in culture, C4), fixed, and the number of cells estimated, or processed for cell death estimation, by measuring the reduction of the metabolic dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Experimental cultures were run in parallel but were re-fed with fresh medium in the absence or presence of SNAP at culture day 3 (C3), incubated for a further 24 h up to C4, then fixed or processed for the MTT assay. Previous studies showed that the re-feeding procedure promotes extensive cell death. SNAP prevented this death in a concentration- and time-dependent manner through the activation of soluble guanylate cyclase; this protection was significantly reversed by the enzyme inhibitors 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) or LY83583, and mimicked by 8-bromo cyclic guanosine 5,-phosphate (8Br-cGMP) (GMP) or 3-(5,-hydroxymethyl-2,-furyl)-1-benzyl indazole (YC-1), guanylate cyclase activators. The effect was blocked by the NO scavenger 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (PTIO). The effect of NO was also suppressed by LY294002, Wortmannin, PD98059, KN93 or H89, indicating the involvement, respectively, of phosphatidylinositol-3 kinase, extracellular-regulated kinases, calmodulin-dependent kinases and protein kinase A signaling pathways. NO also induced a significant increase of neurite outgrowth, indicative of neuronal differentiation, and blocked cell death induced by hydrogen peroxide. Cyclosporin A, an inhibitor of the mitochondrial permeability transition pore considered an important mediator of apoptosis and necrosis, as well as boc-aspartyl (OMe) fluoromethylketone (BAF), a caspase inhibitor, also blocked cell death induced by re-feeding the cultures. These findings demonstrate that NO inhibits apoptosis of retinal neurons in a cGMP/protein kinase G (PKG)-dependent way, and strengthens the notion that NO plays an important role during CNS development. [source] Analysis of N-cadherin function in limb mesenchymal chondrogenesis in vitro,DEVELOPMENTAL DYNAMICS, Issue 2 2002Anthony M. Delise Abstract During embryonic limb development, cartilage formation is presaged by a crucial mesenchymal cell condensation phase. N-Cadherin, a Ca2+ -dependent cell,cell adhesion molecule, is expressed in embryonic chick limb buds in a spatiotemporal pattern suggestive of its involvement during cellular condensation; functional blocking of N-cadherin homotypic binding, by using a neutralizing monoclonal antibody, results in perturbed chondrogenesis in vitro and in vivo. In high-density micromass cultures of embryonic limb mesenchymal cells, N-cadherin expression level is high during days 1 and 2, coincident with active cellular condensation, and decreases upon overt chondrogenic differentiation from day 3 on. In this study, we have used a transfection approach to evaluate the effects of gain- and loss-of-function expression of N-cadherin constructs on mesenchymal condensation and chondrogenesis in vitro. Chick limb mesenchymal cells were transfected by electroporation with recombinant expression plasmids encoding wild-type or two mutant extracellular/cytoplasmic deletion forms of N-cadherin. Expression of the transfected N-cadherin forms showed a transient profile, being high on days 1,2 of culture, and decreasing by day 3, fortuitously coincident with the temporal profile of endogenous N-cadherin gene expression. Examined by means of peanut agglutinin (PNA) staining for condensing precartilage mesenchymal cells, cultures overexpressing wild-type N-cadherin showed enhanced cellular condensation on culture days 2 and 3, whereas expression of the deletion mutant forms (extracellular/cytoplasmic) of N-cadherin resulted in a decrease in PNA staining, suggesting that a complete N-cadherin protein is required for normal cellular condensation to occur. Subsequent chondrogenesis was also affected. Cultures overexpressing the wild-type N-cadherin protein showed enhanced chondrogenesis, indicated by increased production of cartilage matrix (sulfated proteoglycans, collagen type II, and cartilage proteoglycan link protein), as well as increased cartilage nodule number and size of individual nodules, compared with control cultures and cultures transfected with either of the two mutant N-cadherin constructs. These results demonstrate that complete N-cadherin function, at the levels of both extracellular homotypic binding and cytoplasmic linkage to the cytoskeleton by means of the catenin complex, is required for chondrogenesis by mediating functional mesenchymal cell condensation. © 2002 Wiley-Liss, Inc. [source] Growth and production of hatchery-reared juvenile spotted babylon Babylonia areolata Link 1807 cultured to marketable size in intensive flowthrough and semi-closed recirculating water systemsAQUACULTURE RESEARCH, Issue 5 2000N Chaitanawisuti Hatchery-reared juvenile spotted babylon Babylonia areolata (mean initial shell length 12.8 mm) were cultured intensively to marketable size in three 3.0 × 2.5 × 0.7 m indoor canvas rectangular tanks. The duplicate treatments of flowthrough and semi-closed recirculating sea-water systems were compared at an initial stocking density of 300 individuals m,2 (2250 juveniles per tank). The animals were fed ad libitum with fresh carangid fish Selaroides leptolepis once daily. During 240 culture days, average growth rates in shell length and body weight were 3.86 mm month,1 and 1.47 g month,1 for the flowthrough system and 3.21 mm month,1 and 1.10 g month,1 for those in the semi-closed recirculating system. Survival in the flowthrough system (95.77%) was significantly higher than that in the semi-closed recirculating system (79.28%). Feed conversion ratios were 1.68 and 1.96 for flowthrough and semi-closed recirculating systems respectively. [source] Lidocaine/Monoethylglycinexylidide Test, Galactose Elimination Test, and Sorbitol Elimination Test for Metabolic Assessment of Liver Cell BioreactorsARTIFICIAL ORGANS, Issue 6 2010Jörg C. Gerlach Abstract Various metabolic tests were compared for the performance characterization of a liver cell bioreactor as a routine function assessment of cultures in a standby for patient application in clinical studies. Everyday quality assessment (QA) is essential to ensure a continuous level of cellular functional capacity in the development of hepatic progenitor cell expansion systems providing cells for regenerative medicine research; it is also of interest to meet safety requirements in bioartificial extracorporeal liver support systems under clinical evaluation. Quality criteria for the description of bioreactor cultures were developed using primary porcine liver cells as a model. Porcine liver cells isolated by collagenase perfusion with an average of 3 × 109 primary cells were used in 39 bioreactors for culture periods up to 33 days. Measurements of monoethylglycinexylidide synthesis and elimination of lidocaine, galactose elimination, and sorbitol elimination proved to be useful for routine QA of primary liver cell cultures. We demonstrate two methods for dispensing test substances, bolus administration and continuous, steady-state administration. Bolus test data were grouped in Standard, Therapy, Infection/Contamination, and Cell-free control groups. Statistical analyses show significant differences among all groups for every test substance. Post hoc comparisons indicated significant differences between Standard and Cell-free groups for all elimination parameters. For continuous tests, results were categorized according to number of culture days and time-dependent changes were analyzed. Continuous administration enables a better view of culture health and the time dependency of cellular function, whereas bolus administration is more flexible. Both procedures can be used to define cell function. Assessment of cellular function and bioreactor quality can contribute significantly to the quality of experimental or clinical studies in the field of hepatic bioreactor development. [source] |