Home About us Contact | |||
Cultivation Medium (cultivation + medium)
Selected AbstractsFabrication of Nanoporous Copper Film for Electrochemical Detection of GlucoseELECTROANALYSIS, Issue 21 2009Sirilak Sattayasamitsathit Abstract A nanoporous copper film was fabricated on a copper wire by electrodeposition of copper/zinc alloy and chemically etching of zinc. The surface morphology was investigated by SEM. When applied to detect glucose in an amperometric flow injection system the porous copper electrode provided 12 times higher sensitivity than solid copper. It could be continuously used up to 50 times (%RSD=5.7). Different preparations of the porous film provided reproducible responses (P<0.05). Detection of glucose in E. coli cultivation medium compared well with spectrophotometric technique (P<0.05). This simple technique can produce a nanoporous electrode with good performances and can easily be applied to other metals and analytes. [source] Improved ,-Glucanase Production by a Recombinant Escherichia coli Strain using Zinc-Ion Supplemented MediumENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 3 2007U. Beshay Abstract In order to investigate the suitability of different metal chelates for affinity chromatography, an expression vector was constructed. It contained a hybrid ,-glucanase as a model protein fused with a His6 -tag and a secretion cassette providing the ability to secrete ,-glucanase into the culture medium. Supplementation of zinc to the medium led to a rapidly increased expression and release of the target protein into the cultivation medium. Results in respect to the supplementation of the commonly used Terrific Broth "TB-medium" with different metal ions are reported with special emphasis on the influence of zinc ions. A concentration of zinc ions in the order of about 0.175 mM led to optimal results. Batch cultivation under well-controlled conditions showed that the growth behavior did not change significantly by adding zinc ions. Growth in a stirred tank bioreactor was much faster in unsupplemented TB-medium compared to shake flask experiments leading to a much higher biomass concentration (15,g/L instead of 3,g/L). The secretion of ,-glucanase under theses conditions started at the transition into the stationary phase and increased to yield an extracellular activity of 1350,U/mL at the end of the fermentation process. An even higher yield of extracellular ,-glucanase (2800,U/mL) was reached when the fermentation was carried out with TB-medium supplemented with 0.175,mM ZnSO4. [source] Pleiotrophin, an angiogenic and mitogenic growth factor, is expressed in human gliomasJOURNAL OF NEUROCHEMISTRY, Issue 4 2002Rolf Mentlein Abstract Pleiotrophin (PTN) is a mitogenic/angiogenic, 15.3 kDa heparin-binding peptide that is found in embryonic or early postnatal, but rarely in adult, tissues. Since developmentally regulated factors often re-appear in malignant cells, we examined PTN expression in human glioma cell lines, cell cultures derived from solid gliomas and glioma sections. PTN mRNA or protein was detected by reverse transcriptase-polymerase chain reaction, immunohistochemistry, western blot or enzyme-linked immunoassay in all WHO III and IV grade gliomas and cells analyzed in vitro or in situ. One WHO II grade glioma investigated was PTN negative. In vitro, PTN was synthesized in perinuclear regions of glioma cells, secreted into the cultivation medium, but its production varied considerably between glioma cells cultivated from different solid gliomas or glioma cell lines. In situ, PTN expression was restricted to distinct parts/cells of the tumour. PTN did not influence the proliferation of glioma cells themselves, but stimulated [3H]thymidine incorporation into DNA of microglial cells. Furthermore, in Boyden chamber assays, PTN showed a strong chemotactic effect on murine BV-2 microglial cells. PTN is supposed to be a paracrine growth/angiogenic factor that is produced by gliomas and contributes to their malignancy by targeting endothelial and microglial cells. [source] Development of a Highly Productive and Scalable Plasmid DNA Production PlatformBIOTECHNOLOGY PROGRESS, Issue 5 2006K. Listner With the applications of DNA vaccines extending from infectious diseases to cancer, achieving the most efficient, reproducible, robust, scalable, and economical production of clinical grade plasmid DNA is paramount to the medical and commercial success of this novel vaccination paradigm. A first generation production process based on the cultivation of Escherichia coli in a chemically defined medium, employing a fed-batch strategy, delivered reasonable volumetric productivities (500,750 mg/L) and proved to perform very well across a wide range of E. coli constructs upon scale-up at industrial scale. However, the presence of monosodium glutamate (MSG) in the formulation of the cultivation and feed solution was found to be a potential cause of process variability. The development of a second generation process, based on a defined cultivation medium and feed solution excluding MSG, was undertaken. Optimization studies, employing a plasmid coding for the HIV gag protein, resulted in cultivation conditions that supported volumetric plasmid titers in excess of 1.2 g/L, while achieving specific yields ranging from 25 to 32 ,g plasmid DNA/mg of dry cell weight. When used for the production of clinical supplies, this novel process demonstrated applicability to two other constructs upon scale-up in 2,000-L bioreactors. This second generation process proved to be scalable, robust, and highly productive. [source] |