Cumulus Oocyte Complexes (cumulus + oocyte_complex)

Distribution by Scientific Domains


Selected Abstracts


Effect of maturation stage at cryopreservation on post-thaw cytoskeleton quality and fertilizability of equine oocytes

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2006
T. Tharasanit
Abstract Oocyte cryopreservation is a potentially valuable technique for salvaging the germ-line when a valuable mare dies, but facilities for in vitro embryo production or oocyte transfer are not immediately available. This study examined the influence of maturation stage and freezing technique on the cryopreservability of equine oocytes. Cumulus oocyte complexes were frozen at the immature stage (GV) or after maturation in vitro for 30 hr (MII), using either conventional slow freezing (CF) or open pulled straw vitrification (OPS); cryoprotectant-exposed and untreated nonfrozen oocytes served as controls. After thawing, GV oocytes were matured in vitro, and MII oocytes were incubated for 0 or 6 hr, before staining to examine meiotic spindle quality by confocal microscopy. To assess fertilizability, CF MII oocytes were subjected to intracytoplasmic sperm injection (ICSI) and cultured in vitro. At 12, 24, and 48 hr after ICSI, injected oocytes were fixed to examine their progression through fertilization. Both maturation stage and freezing technique affected oocyte survival. The meiosis resumption rate was higher for OPS than CF for GV oocytes (28% vs. 1.2%; P,<,0.05), but still much lower than for controls (66%). Cryopreserving oocytes at either stage induced meiotic spindle disruption (37%,67% normal spindles vs. 99% in controls; P,<,0.05). Among frozen oocytes, however, spindle quality was best for oocytes frozen by CF at the MII stage and incubated for 6 hr post-thaw (67% normal); since this combination of cryopreservation/IVM yielded the highest proportion of oocytes reaching MII with a normal spindle (35% compared to <20% for other groups), it was used when examining the effects of cryopreservation on fertilizability. In this respect, the rate of normal fertilization for CF MII oocytes after ICSI was much lower than for controls (total oocyte activation rate, 26% vs. 56%; cleavage rate at 48 hr, 8% vs. 42%: P,<,0.05). Thus, although IVM followed by CF yields a respectable percentage of normal-looking MII oocytes (35%), their ability to support fertilization is severely compromised. Mol. Reprod. Dev. © 2006 Wiley-Liss, Inc. [source]


Effect of macromolecule supplementation during in vitro maturation of goat oocytes on developmental potential

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2004
J.R. Herrick
Abstract In vitro maturation (IVM) of goat oocytes with serum-supplemented media results in oocytes with reduced developmental potential. The objective of this study was to develop a defined medium for IVM of goat oocytes that better supports subsequent embryonic development. Cumulus oocyte complexes (COC) were matured for 18,20 hr in: Experiment (1), tissue culture medium 199 (TCM199) with 10% (v/v) goat serum or modified synthetic oviduct fluid maturation medium (mSOFmat) with 2.5, 8.0, or 20.0 mg/ml bovine serum albumin (BSA); Experiment (2), mSOFmat with 4.0, 8.0, 12.0, or 16.0 mg/ml BSA; or Experiment (3), 1.0 mg/ml polyvinyl alcohol (PVA; control), 4.0 mg/ml BSA, 0.5 mg/ml hyaluronate plus 0.5 mM citrate, or hyaluronate, citrate, and BSA. Mature COC were coincubated for 20,22 hr with 12,15,×,106 sperm/ml in modified Brackett and Oliphant (mBO) medium. Embryos were cultured for a total of 7 days in G1/2, and evaluated for cleavage, and blastocyst development, hatching, and total cell numbers. In the first experiment, more (P,<,0.05) blastocysts developed per cleaved embryo following maturation in mSOFmat with 2.5 or 8.0 mg/ml BSA than with 20.0 mg/ml BSA or TCM199 with 10% goat serum. The various concentrations of BSA used in the second experiment did not affect (P,>,0.05) any of the developmental endpoints examined. In the third experiment, developmental potential of oocytes matured with PVA or hyaluronate with citrate was not different (P,>,0.05) from oocytes matured in the presence of BSA. These results demonstrate that developmentally competent goat oocytes can be matured under defined conditions. Mol. Reprod. Dev. 69: 338,346, 2004. © 2004 Wiley-Liss, Inc. [source]


Higher expression of hyaluronan binding protein 1 (HABP1/p32/gC1qR/SF2) during follicular development and cumulus oocyte complex maturation in rat

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 3 2008
Sonu Chand Thakur
Abstract Ovulation is a complex process of releasing a fertilizable oocyte and depends on the proper formation of an extracellular hyaluronan rich matrix by the cumulus oocyte complex (COC). The formation of a HA rich matrix is dependent on the synthesis and organization of HA in the presence of several biomolecules that mediate its crosslinking. To gain an insight into the follicular maturation and COC expansion, we have studied the expression of hyaluronan binding protein 1 (HABP1), which is known to interact specifically with hyaluronan. The level of HABP1 increased markedly during ovulation after gonadotropin stimulation, and the overexpression was seen in mural granulosa cells, expanding cumulus cells and follicular fluid. However, HABP1 could not be detected in the luteal cells of corpus luteum after ovulation. Such increased expression of HABP1 was observed both during in vivo and in vitro conditions of COC expansion. The level of HABP1 transcript was upregulated up to fivefold after COC expansion as compared to compact COC. Immunofluorescence analysis showed HABP1 to be localized in the cytoplasm and extracellular matrix, suggesting its role in ECM organization. The cultured expanded COC treated with hyaluronidase for different time periods showed the gradual dispersion of COC, which coincide with the loss of HABP1 from the matrix suggesting that HABP1 is bound to hyaluronan. These results indicate that HABP1 expressed in rat COCs during maturation may facilitate the formation of the HA matrix in the extracellular space around the oocyte with cumulus expansion during maturation. Mol. Reprod. Dev. 75: 429,438, 2008. © 2007 Wiley-Liss, Inc. [source]


Several signaling pathways are involved in the control of cattle oocyte maturation

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2004
Céline Vigneron
Abstract The main limit of in vitro production of domestic mammal embryos comes from the low capacity of in vitro matured oocytes to develop after fertilization. As soon as they are separated from follicular environment, oocytes spontaneously resume meiosis without completion of their terminal differentiation. Roscovitine (ROS), an inhibitor of M-phase promoting factor (MPF) kinase activity reversibly blocks the meiotic resumption in vitro. However, in cattle maturing oocytes several cellular events such as protein synthesis and phosphorylation, chromatin condensation and nuclear envelope folding escape ROS inhibition suggesting the alternative pathways in oocyte maturation. We compared the level of synthesis and phosphorylation of several protein kinases during bovine cumulus oocyte complex (COC) maturation in vitro in the presence or not of epidermal growth factor (EGF) and ROS. We showed that during the EGF-stimulated maturation, ROS neither affected the decrease of EGF receptor (EGFR) nor did inhibit totally its phosphorylation in cumulus cells and also did not totally eliminate tyrosine phosphorylation in oocytes. However, ROS did inhibit the Phosphoinositide 3-kinase (PI3) activity when oocytes mature without EGF. Accumulation of Akt/PKB (protein kinase B), JNK1/2 (jun N-terminal kinases) and Aurora-A in oocytes during maturation was not affected by ROS. However, the phosphorylation of Akt but not JNKs was diminished in ROS-treated oocytes. Thus, PI3 kinase/Akt, JNK1/2 and Aurora-A are likely to be involved in the regulation of bovine oocyte maturation and some of these pathways seem to be independent to MPF activity and meiotic resumption. This complex regulation may explain the partial meiotic arrest of ROS-treated oocytes and the accelerated maturation observed after such treatment. Mol. Reprod. Dev. 69: 466,474, 2004. © 2004 Wiley-Liss, Inc. [source]


Sperm surface arylsulfatase A can disperse the cumulus matrix of cumulus oocyte complexes,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2007
Alexander Wu
Cumulus cell layers of expanded cumulus oocyte complexes (COCs) are interlinked with networks of hyaluronic acid, chondroitin sulfate B proteoglycans and link proteins, and they can be dispersed by sperm surface hyaluronidases. In this report, we showed that arylsulfatase A (AS-A), existing on the sperm head surface, also had this dispersion action. Purified AS-A free of protease, hyaluronidase and chondroitinase activities could disperse the cumulus matrix of expanded COCs. However, this COC dispersion action was not associated with AS-A desulfation activity, assayed by using p -nitrocatecholsulfate (artificial substrate). COCs incubated for 1 h with sperm pretreated with anti-AS-A IgG in the presence of apigenin (a hyaluronidase inhibitor) did not exhibit matrix dispersion, whereas several cumulus layers were already dispersed in COCs incubated with sperm pretreated with preimmune IgG. Furthermore, sperm from AS-A null mice showed a significant delay in COC dispersion, compared with wild-type sperm. Within 1 h of sperm-COC co-incubation, the size of COCs incubated with AS-A null sperm was 65% of the original dimension, whereas that of COCs inseminated with wild-type sperm was only 17%. A further delay in COC dispersion by AS-A(,/,) mouse sperm was observed when apigenin was present in the co-incubation. We also showed for the first time that AS-A had a specific affinity for chondroitin sulfate B, a component of cumulus matrix proteoglycan networks; this might provide a mechanism of cumulus matrix destabilization induced by sperm surface AS-A. J. Cell. Physiol. 213: 201,211, 2007. © 2007 Wiley-Liss, Inc. [source]


Effects of Gonadotropins on In Vitro Maturation and of Electrical Stimulation on Parthenogenesis of Canine Oocytes

REPRODUCTION IN DOMESTIC ANIMALS, Issue 1 2010
BS Kim
Contents The objective of this study was to determine the effects of gonadotropins on in vitro maturation (IVM) and electrical stimulation on the parthenogenesis of canine oocytes. In experiment I, cumulus oocyte complexes were collected from ovaries at a random phase of the oestrus cycle and cultured on maturation medium treated with hCG or eCG for 48 or 72 h. There were no significant differences in the effects on the metaphase II (MII) rate between the hCG and eCG treatment groups over 48 h (5.4% vs 5.5%). The MII rate in the co-treatment group of hCG and eCG for 48 h was higher than in each hormone treated group (15.5%, p < 0.05). In experiment 2, the parthenogenetic effect on oocyte development, at various electrical field strengths (1.0, 1.5, 2.0 kV/cm DC) for 60 or 80 ,s with a single DC pulse after IVM on the co-treatment of hCG and eCG, was examined. The rate of pronuclear formation (37.1%) in electrical activation at 1.5 kV/60 ,s without cytochalasin B (CB) was higher than that of oocytes activated in the other groups (p < 0.05). However, we did not observe the cleavage stages. Also, CB did not influence parthenogenesis of canine oocytes. The results showed that the pronucleus formation rate, indicative of the parthenogenesis start point, could be increased by electrical stimulation. Therefore, these results can provide important data for the parthenogenesis of canine oocytes and suggest the probability of parthenogenesis in canines. [source]


Light and Transmission Electron Microscopy of Immature Camelus Dromedarius Oocyte

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 4 2004
H. Nili
Summary In order to provide a consistent system for laboratory production of embryos, the characteristics of immature camel oocyte must first be described. The objective of this study was to define ultrastructural features of immature camel oocyte. Ovaries were obtained from camels at a local abattoir, and then transported to the laboratory within 2 h. Camelus cumulus oocyte complexes (COCs) were aspirated from 2,6 mm follicles using a 22-gauge needle. Excellent and good quality COCs were selected and prepared for transmission electron microscopy study using a cavity slide. The fine structure of camel oocyte is morphologically similar to that of other mammalian oocytes. However, some minor differences exist between COC of camel and other mammalian species. Different size and shape of membrane-bound vesicles, lipid droplet, mitochondria and cortical granules were distributed throughout the ooplasm. Discrete or in association with endoplasmic reticulum, Golgi complexes were observed in the periphery of the oocytes. The majority of the oocytes were in the germinal vesicle stage. [source]