Cuboidal Morphology (cuboidal + morphology)

Distribution by Scientific Domains

Selected Abstracts

In-vitro nasal drug delivery studies: comparison of derivatised, fibrillar and polymerised collagen matrix-based human nasal primary culture systems for nasal drug delivery studies

Remigius Uchenna Agu
The aim of this study was to establish a collagen matrix-based nasal primary culture system for drug delivery studies. Nasal epithelial cells were cultured on derivatised (Cellagen membrane CD-24), polymerised (Vitrogen gel) and fibrillar (Vitrogen film) collagen substrata. Cell morphology was assessed by microscopy. The cells were further characterised by measurement of ciliary beat frequency (CBF), transepithelial resistance (TER), permeation of sodium fluorescein, mitochondrial dehydrogenase (MDH) activity and lactate dehydrogenase (LDH) release upon cell exposure to sodium tauro-24, 25 dihydrofusidate (STDHF). Among the three collagen substrata investigated, the best epithelial differentiated phenotype (monolayer with columnar/cuboidal morphology) occurred in cells grown on Cellagen membrane CD-24 between day 4 and day 11. Cell culture reproducibility was better with Cellagen membrane CD-24 (90%) in comparison with Vitrogen gel (70%) and Vitrogen film (< 10%). TER was higher in cells grown on Vitrogen gel than on Cellagen membrane CD-24 and Vitrogen film. The apparent permeability coefficient (Papp 10,7 cm s,1) of sodium fluorescein in these conditions was 0.45 0.08 (Vitrogen gel) and 1.91 0.00 (Cellagen membrane CD-24). Except for LDH release, CBF and cell viability were comparable for all the substrata. Based on MDH activity, LDH release, CBF, TER and permeation studies, Cellagen membrane CD-24- and Vitrogen gel-based cells were concluded to be functionally suitable for in-vitro nasal drug studies. Vitrogen film-based cultures may be limited to metabolism and cilio-toxicity studies. [source]

Hepatic differentiation of human bone marrow-derived UE7T-13 cells: Effects of cytokines and CCN family gene expression

Takashi Shimomura
Aim:, Bone marrow-derived mesenchymal stem cells (MSC) are expected to be an excellent source of cells for transplantation. We aimed to study the culture conditions and involved genes to differentiate MSC into hepatocytes. Methods:, The culture conditions to induce the efficient differentiation of human bone marrow-derived UE7T-13 cells were examined using cytokines, hormones, 5-azacytidine and type IV collagen. Results:, We found that combination of acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) with type IV collagen coating induced hepatic differentiation of UE7T-13 cells at over 30% frequency, where expression of albumin mRNA was increased over 20-fold. The differentiated cells had functions of albumin production, glycogen synthesis and urea secretion as well as expressing hepatocyte-specific genes. In addition, these cellshave binuclear and cuboidal morphology, which is a characteristic feature of hepatocytes. During hepatic differentiation, UE7T-13 cells showed depressed expression of WISP1 and WISP2 genes, members of the CCN family. Conversely, knockdown of WISP1 or WISP2 gene by siRNA stimulated hepatic differentiation. The effect of aFGF/bFGF/HGF/type IV collagen coating and WISP1-siRNA on hepatic differentiation was additive. Conclusion:, The present study suggests that aFGF/bFGF/HGF/type IV collagen coating is the efficient condition for hepatic differentiation of UE7T-13 cells, and that WISP1 and WISP2 play an important role in hepatic transdifferentiation of these cells. [source]

Enhanced differentiation of embryonic stem cells using co-cultivation with hepatocytes

Rebecca N. Moore
Abstract We examined the effects of co-cultivated hepatocytes on the hepatospecific differentiation of murine embryonic stem (ES) cells. Utilizing an established mouse ES cell line expressing high or low levels of E-cadherin, that we have previously shown to be responsive to hepatotrophic growth factor stimulation (Dasgupta et al., 2005. Biotechnol Bioeng 92(3):257,266), we compared co-cultures of cadherin-expressing ES (CE-ES) cells with cultured rat hepatocytes, allowing for either paracrine interactions (indirect co-cultures) or both juxtacrine and paracrine interactions (direct co-cultures, random and patterned). Hepatospecific differentiation of ES cells was evaluated in terms of hepatic-like cuboidal morphology, heightened gene expression of late maturation marker, glucose-6-phosphatase in relation to early marker, alpha-fetoprotein (AFP), and the intracellular localization of albumin. Hepatocytes co-cultured with growth factor primed CE-ES cells markedly enhanced ES cell differentiation toward the hepatic lineage, an effect that was reversed through E-cadherin blockage and inhibited in control ES cells with reduced cadherin expression. Comparison of single ES cell cultures versus co-cultures show that direct contact co-cultures of hepatocytes and CE-ES cells maximally promoted ES cell commitment towards hepatodifferentiation, suggesting cooperative effects of cadherin-based juxtacrine and paracrine interactions. In contrast, E-cadherin deficient mouse ES (CD-ES) cells co-cultured with hepatocytes failed to show increased G6P expression, confirming the role of E-cadherin expression. To establish whether albumin expression in CE-ES cells was spatially regulated by co-cultured hepatocytes, we co-cultivated CE-ES cells around micropatterned, pre-differentiated rat hepatocytes. Albumin localization was enhanced "globally" within CE-ES cell colonies and was inhibited through E-cadherin antibody blockage in all but an interfacial band of ES cells. Thus, stem cell based cadherin presentation may be an effective tool to induce hepatotrophic differentiation by leveraging both distal/paracrine and contact/juxtacrine interactions with primary cells of the liver. Biotechnol. Bioeng. 2008 Wiley Periodicals, Inc. [source]

E-cadherin synergistically induces hepatospecific phenotype and maturation of embryonic stem cells in conjunction with hepatotrophic factors

Anouska Dasgupta
Abstract Since effective cell sourcing is a major challenge for the therapeutic management of liver disease and liver failure, embryonic stem (ES) cells are being widely investigated as a promising source of hepatic-like cells with their proliferative and pluripotent capacities. Cell,cell interactions are crucial in embryonic development modulating adhesive and signaling functions; specifically, the cell,cell adhesion ligand, cadherin is instrumental in gastrulation and hepatic morphogenesis. Inspired by the role of cadherins in development, we investigated the role of expression of E-cadherin in cultured murine ES cells on the induction of hepatospecific phenotype and maturation. The cadherin-expressing embryonic stem (CE-ES) cells intrinsically formed pronounced cell aggregates and cuboidal morphology whereas cadherin-deficient cadherin-expressing embryonic stem (CD-ES) cells remained more spread out and corded in morphology. Through controlled stimulation with single or combined forms of hepatotrophic growth factors; hepatocyte growth factor (HGF), dexamethasone (DEX) and oncostatin M (OSM), we investigated the progressive maturation of CE-ES cells, in relation to the control, CD-ES cells. Upon growth factor treatment, the CE-ES cells adopted a more compacted morphology, which exhibited a significant hepatocyte-like cuboidal appearance in the presence of DEX-OSM-HGF. In contrast, the CD-ES cells exhibited a mixed morphology and appeared to be more elongated in the presence of DEX-OSM-HGF. Reverse-transcriptase polymerase chain reaction was used to delineate the most differentiating condition in terms of early (alpha-fetoprotein (AFP)), mid (albumin), and late-hepatic (glucose-6-phosphatase) markers in relation to growth factor presentation for both CE-ES and CD-ES cells. We report that following the most differentiating condition of DEX-OSM-HGF stimulation, CE-ES cells expressed increased levels of albumin and glucose-6-phosphatase, whereas the CD-ES cells showed low levels of AFP and marginal levels of albumin and glucose-6-phosphatase. These trends suggest that the membrane expression of E-cadherin in ES cells can elicit a marked response to growth factor stimulation and lead to the induction of later stages of hepatocytic maturation. Thus, cadherin-engineered ES cells could be used to harness the cross-talk between the hepatotrophic and cadherin-based signaling pathways for controlled acceleration of ES hepatodifferentiation. 2005 Wiley Periodicals, Inc. [source]