Cu Tolerance (cu + tolerance)

Distribution by Scientific Domains


Selected Abstracts


Effect of Cu stress on the invertase activity and root growth in two populations of Rumex dentatus L. with different Cu tolerance

ENVIRONMENTAL TOXICOLOGY, Issue 4 2008
Yu Huang
Abstract There has been no study on key enzymes in sucrose cleavage in metallophyte plants so far, which may be crucial for the plants' root growth and heavy metal tolerance maintenance. Acid invertases are rate-limiting enzymes in sucrose metabolism. Here, we tested the hypothesis that the roots of copper-tolerant plants should manifest a higher activity of acid invertases than nontolerant plants both for supporting growth and for their maintaining tolerance under Cu stress. Two populations of Rumex dentatus L., one from an ancient waste heap at a Cu mine (Cu-tolerant population), and the other from a noncontaminated site (Cu nontolerant population), were used in the experiments. The seedlings of Rumex dentatus L. were exposed to 0, 10, and 40 ,M CuCl2 for 14 days. Cu exposure had a stronger inhibition on root growth and thus resulted in a lower root/shoot ratio in the plants of nontolerant population compared with the Cu-tolerant population. Cu exposure showed a stronger inhibition of acid invertase activity of Cu nontolerant plants than Cu tolerant plants, whereas neutral/alkaline invertase was insensitive to Cu. A positive correlation between the activity of acid invertases and the root growth and root/shoot ratio was observed. The results suggested that the higher activities in acid invertases of Cu-tolerant population might at least partly associate with the plants' Cu tolerance, and their higher activities in acid invertases in turn played an role in maintenance of the Cu tolerance by supplying carbon and energy for tolerance mechanisms. © 2008 Wiley Periodicals, Inc. Environ Toxicol, 2008. [source]


Copper-induced modifications of the trophic relations in riverine algal-bacterial biofilms

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2003
Christiane Barranguet
Abstract The effects of copper (Cu) on photosynthetic riverine biofilms were studied in artificial stream channels. Direct effects on the composition and functioning of the biofilms were investigated using plant pigments, community-level physiological profiles (CLPP), and pulse-amplitude-modulated (PAM) fluorescence. Copper caused a significant reduction of microalgal biomass and induced a shift in the population from diatoms to cyanobacteria. However, a decrease in biomass indicated that the replacement of species was not totally effective to counteract the toxic effects of Cu. A direct effect of Cu could also be shown in the bacterial community, and, furthermore, changes in the CLPP could be related to the Cu treatment. Copper-exposed biofilms lost the capacity to use between 11 and 15% of the substrates, but many of the remaining capacities became more robust, indicating an increased Cu tolerance due to the exposure. The change in the biofilm microbial composition points to the indirect effects of Cu on biofilms due to the close interdependence between biofilm autotrophic and heterotrophic compartments. Grazing by snails, which appeared to be an important factor structuring biofilms without any Cu addition, had a very minor effect on Cu-exposed biofilms. Although grazing changed the bacterial composition, its effects were not detected either on the algal community or on the biofilm community tolerance to Cu. [source]


Copper toxicity thresholds for important restoration grass species of the western United States,

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2002
Mark W.
Abstract Copper toxicity thresholds for plant species that are used in restoration activities in western North America have not been established. As a result, ecological risk assessments must rely on toxicity thresholds established for agronomic species, which usually differ from those of species used in restoration. Thus, risk assessors have the potential for classifying sites as phytotoxic to perennial, nonagronomic species and calling for intensive remediation activities that may not be necessary. The objective of this study was to provide a better estimate of Cu toxicity thresholds for five grass species that are commonly used in restoration efforts in the western United States. We used a greenhouse screening study where seedlings of introduced redtop (Agrostis gigantea Roth.), the native species slender wheatgrass (Elymus trachycaulus [Link] Gould ex Shinners var. Pryor), tufted hairgrass (Deschampsia caespitosa [L.] Beauvois), big bluegrass (Poa secunda J. Presl var. Sherman), and basin wildrye (Leymus cinereus [Scribner&Merrill] A. Löve var. Magnar) and the agricultural species common wheat (Triticum aestivum L.) were grown in sand culture and exposed to supplemental concentrations of soluble Cu of 0 (control), 50, 100, 150, 200, 250, and 300 mg/L. We determined six measures of toxicity: the 60-d mean lethal concentration (LC50), 60-d mean effective concentration (EC50)-plant, 60-d EC50-shoot, 60-d EC50-root, phytotoxicity threshold (PT50)-shoot, and the PT50-root. Results suggest that these restoration grass species generally have higher Cu tolerance than agronomic species reported in the past. Of the species tested, redtop appeared to be especially tolerant of high levels of substrate and tissue Cu. Values of EC50-plant for restoration grasses were between 283 and 710 mg Cu/L compared to 120 mg Cu/L for common wheat. Measured PT50-shoot values were between 737 and 10,792 mg Cu/ L. These reported thresholds should be more useful for risk assessors than those currently used, which are based largely on agronomic crops. [source]


Maternally derived Cu tolerance in larval fathead minnows: how long does it persist?

JOURNAL OF FISH BIOLOGY, Issue 5 2006
M. K. Sellin
Fathead minnow Pimephales promelas larvae were produced by either copper (Cu)-exposed or naďve females and then subjected to a 96 h survival test using Cu concentrations of 400 and 800 ,g l,1. Three survival challenges were conducted: the first survival test featured 0 day-old larvae while the second and third featured 8 and 15 day-old larvae, respectively. The results of this study show that maternally derived Cu tolerance was relatively short-lived as it persisted for <8 days. [source]