Critical Signaling Pathways (critical + signaling_pathway)

Distribution by Scientific Domains


Selected Abstracts


Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2008
Christopher M. Amantea
Abstract Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of ,-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes. J. Cell. Biochem. 105: 424,436, 2008. © 2008 Wiley-Liss, Inc. [source]


All in the family: Using inherited cancer syndromes to understand de-regulated cell signaling in brain tumors

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2007
S. Sean Houshmandi
Abstract The cell signaling pathways that are tightly regulated during development are often co-opted by cancer cells to allow them to escape from the constraints that normally limit cell growth and cell movement. In this regard, de-regulated signaling in cancer cells confers a number of key tumor-associated properties, including increased cell proliferation, decreased cell death, and increased cell motility. The identification of some of these critical signaling pathways in the nervous system has come from studies of inherited cancer syndromes in which affected individuals develop brain tumors. The study of brain tumors arising in patients with neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and tuberous sclerosis complex (TSC) has already uncovered several key intracellular signaling pathways important for modulating brain tumor growth. An in-depth analysis of these intracellular signaling pathways will not only lead to an improved understanding of the process of brain tumorigenesis, but may also provide important molecular targets for future therapeutic drug design. J. Cell. Biochem. 102: 811,819, 2007. © 2007 Wiley-Liss, Inc. [source]


Regulatory factor X4 variant 3: A transcription factor involved in brain development and disease,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 16 2007
Donghui Zhang
Abstract Regulatory factor X4 variant 3 (RFX4_v3) is a recently identified transcription factor specifically expressed in the brain. Gene disruption in mice demonstrated that interruption of a single allele (heterozygous, +/,) prevented formation of the subcommissural organ (SCO), resulting in congenital hydrocephalus, whereas interruption of two alleles (homozygous, ,/,) caused fatal failure of dorsal midline brain structure formation. These mutagenesis studies implicated RFX4_v3 in early brain development as well as the genesis of the SCO. Rfx4_v3 deficiency presumably causes abnormalities in brain by altering the expression levels of many genes that are crucial for brain morphogenesis, such as the signaling components in the Wnt, bone morphogenetic protein, and retinoic acid pathways. RFX4_v3 might affect these critical signaling pathways in brain development. Cx3cl1, a chemokine gene highly expressed in brain, was identified as a direct target for RFX4_v3, indicating that RFX4_v3 possesses trans -acting activity to stimulate gene expression. Rfx4_v3 is highly expressed in the suprachiasmatic nucleus and might be involved in regulating the circadian clock. One haplotype in RFX4_v3 gene is linked to a higher risk of bipolar disorder, suggesting that this protein might contribute to the pathogenesis of the disease. This Mini-Review describes our current knowledge about RFX4_v3, an important protein that appears to be involved in many aspects of brain development and disease. © 2007 Wiley-Liss, Inc. [source]


Monoclonal antibodies to target epidermal growth factor receptor,positive tumors

CANCER, Issue 5 2002
A new paradigm for cancer therapy
Abstract BACKGROUND Traditional cytotoxic approaches to tumor management are associated with efficacy and toxicity limitations. Blockade of the epidermal growth factor receptor (EGFR) and its ligands is a novel approach to the treatment of human tumors that offers a noncytotoxic alternative to cancer treatment. METHODS An English-language literature search was conducted to identify studies assessing the in vitro and in vivo effects of EGFR blockade with an emphasis on approaches that use monoclonal antibody therapy. RESULTS The EGF pathway regulates normal cellular processes and appears to be correlated with the development of malignancy. Approximately 30% of human tumors express EGFR, which has been reported to be correlated with poor prognosis and diminished disease-free and overall survival in selected tumor types. A number of anti-EGFR monoclonal antibodies have been developed, which currently are undergoing clinical trials in humans. Effective anti-EGFR monoclonal antibodies compete with endogenous ligands, primarily EGF and transforming growth factor,,, for receptor ligand-binding sites. Binding to EGFR blocks critical signaling pathways and interferes with the growth of tumors expressing EGFR. Anti-EGFR monoclonal antibodies that currently are under study include IMC-C225, EMD 55900, ICR 62, and ABX-EGF. CONCLUSIONS These antibodies have demonstrated promising results and appear to have been well tolerated. EGFR-targeted therapy addresses important, unmet needs in the treatment of human tumors, particularly EGFR-positive epithelial tumors including common malignancies of the head and neck, lung, and colon. Cancer 2002;94:1593,611. © 2002 American Cancer Society. DOI 10.1002/cncr.10372 [source]