Creep Resistance (creep + resistance)

Distribution by Scientific Domains


Selected Abstracts


Novel Nanoparticle-Reinforced Metal Matrix Composites with Enhanced Mechanical Properties

ADVANCED ENGINEERING MATERIALS, Issue 8 2007
C. Tjong
Abstract This paper summarizes and reviews the state-of-the-art processing methods, structures and mechanical properties of the metal matrix composites reinforced with ceramic nanoparticles. The metal matrices of nanocomposites involved include aluminum and magnesium. The processing approaches for nanocomposites can be classified into ex-situ and in-situ synthesis routes. The ex-situ ceramic nanoparticles are prone to cluster during composite processing and the properties of materials are lower than the theoretical values. Despite the fact of clustering, ex-situ nanocomposites reinforced with very low loading levels of nanoparticles exhibit higher yield strength and creep resistance than their microcomposite counterparts filled with much higher particulate content. Better dispersion of ceramic nanoparticles in metal matrix can be achieved by using appropriate processing techniques. Consequently, improvements in both the mechanical strength and ductility can be obtained readily in aluminum or magnesium by adding ceramic nanoparticles. Similar beneficial enhancements in mechanical properties are observed for the nanocomposites reinforced with in-situ nanoparticles. [source]


Creep failure mechanisms of a Ti-6Al-4V thick plate

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 11 2001
F. J. Seco
The creep failure operating mechanisms of a 17-mm thick plate of a Ti,6Al,4V alloy in various heat treating conditions have been investigated. Specimens in the as-received, mill-annealed, condition (50 min maintenance at 720 °C and air cooled as the final step of the thermomechanical process) showed the lowest creep resistance and their metallographic analysis revealed that the temperature-activated dislocation climb was the mechanism responsible for the failure and that observed holes were generated by plastic deformation, rather than by creep cavitation. Conversely, maximum times to failure were recorded in beta-annealed specimens (1030 °C for 30 min, air cooled and aged for 2 h at 730 °C). The fracture surfaces of these broken specimens exhibited an intergranular morphology that was attributed to grain boundary sliding along the former beta grains. Finally, alpha,beta field-annealed samples (940 °C 4 h, and furnace cooled to 700 °C) possessed intermediate lives between those of mill-annealed and beta-annealed specimens and the failure operating mechanism was diffusional creep by the nucleation and coalescence of the creep cavities generated at the alpha,beta interfaces and the triple points. [source]


Efficient utilization of plastic waste through product design and process adaptation: A case study on stiffness enhancement of beams produced from plastic lumber

ADVANCES IN POLYMER TECHNOLOGY, Issue 3 2008
Cristian Pio
Abstract The aim of the present work is the development of a method for structural reinforcement of beams obtained by in-mold extrusion of plastics from solid urban waste. The beams obtained by in-mold extrusion are commonly used for outdoor furniture and structures. The material used for such applications is mainly composed of low-density polyethylene derived from bags and films, with small amounts of high density polyethylene and polypropylene, as well as traces of polyethylene terephthalate. This material is usually referred to as "plastic lumber." Plastic lumber products have a low stiffness, which results in high deflections under flexural loads, particularly under creep loading. In this study, reinforcing rods of high aspect ratio were incorporated into plastic lumber beams in specific positions with respect to the cross section of the beam. The reinforcement of the plastic lumber beams with fine rods is introduced in the typical intrusion process used for the production of unreinforced beams. Glass fiber reinforced pultruded rods were chosen for this purpose from a preliminary evaluation of different materials. Different diameter glass fiber reinforced pultruded rods, including surface-abraded systems to increase the roughness, were used for the reinforcement of plastic lumber beams. The reinforced beams were tested in terms of flexural stiffness, creep resistance, and pullout resistance of the embedded rods. The results obtained from the mechanical tests showed a significant enhancement of flexural stiffness and creep resistance behavior. The performance at higher stress levels was shown to be significantly dependent on the interfacial adhesion between rods and polymer matrix. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 27:133,142, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20131 [source]


Effect of long-term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2010
H. Fouad
Abstract In the total joint prostheses, Ultra High Molecular Weight Polyethylene (UHMWPE) may undergo an oxidative degradation in the long term. The overall properties of UHMWPE are expected to be altered due to the oxidative degradation. The goal of this study is to investigate the effects of natural aging up to 6 years in air on the thermal, mechanical, and viscoelastic properties of UHMWPE that was used in total joint replacement. The changes in UHMWPE properties due to aging are determined using Differential Scanning Calorimetry (DSC), uniaxial tensile tests, and Dynamic Mechanical Analysis (DMA). The DSC results show that the lamellar thickness and degree of crystallinity of UHMWPE specimens increase by 38% and 12% due to aging. A small shoulder region in the DSC thermograms is remarked for aged specimens, which is an indication of formation of new crystalline forms within their amorphous region. The tensile properties of aged and nonaged UHMWPE specimens show a significant decrease in the elastic modulus, yield, fracture stresses, and strain at break due to aging. The DM testing results indicate that the storage modulus and creep resistance of UHMWPE specimens decrease significantly due to aging. Also, it is remarked that the , relaxation peak for aged UHMWPE specimens occurs at lower temperature compared to nonaged ones. The significant reduction in the strength and creep resistance of UHMWPE specimens due to aging would affect the long-term clinical performance of the total joint replacement and should be taken into consideration during artificial joint design. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Polymer-Derived Ceramics: 40 Years of Research and Innovation in Advanced Ceramics

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2010
Paolo Colombo
Preceramic polymers were proposed over 30 years ago as precursors for the fabrication of mainly Si-based advanced ceramics, generally denoted as polymer-derived ceramics (PDCs). The polymer to ceramic transformation process enabled significant technological breakthroughs in ceramic science and technology, such as the development of ceramic fibers, coatings, or ceramics stable at ultrahigh temperatures (up to 2000°C) with respect to decomposition, crystallization, phase separation, and creep. In recent years, several important advances have been achieved such as the discovery of a variety of functional properties associated with PDCs. Moreover, novel insights into their structure at the nanoscale level have contributed to the fundamental understanding of the various useful and unique features of PDCs related to their high chemical durability or high creep resistance or semiconducting behavior. From the processing point of view, preceramic polymers have been used as reactive binders to produce technical ceramics, they have been manipulated to allow for the formation of ordered pores in the meso-range, they have been tested for joining advanced ceramic components, and have been processed into bulk or macroporous components. Consequently, possible fields of applications of PDCs have been extended significantly by the recent research and development activities. Several key engineering fields suitable for application of PDCs include high-temperature-resistant materials (energy materials, automotive, aerospace, etc.), hard materials, chemical engineering (catalyst support, food- and biotechnology, etc.), or functional materials in electrical engineering as well as in micro/nanoelectronics. The science and technological development of PDCs are highly interdisciplinary, at the forefront of micro- and nanoscience and technology, with expertise provided by chemists, physicists, mineralogists, and materials scientists, and engineers. Moreover, several specialized industries have already commercialized components based on PDCs, and the production and availability of the precursors used has dramatically increased over the past few years. In this feature article, we highlight the following scientific issues related to advanced PDCs research: (1) General synthesis procedures to produce silicon-based preceramic polymers. (2) Special microstructural features of PDCs. (3) Unusual materials properties of PDCs, that are related to their unique nanosized microstructure that makes preceramic polymers of great and topical interest to researchers across a wide spectrum of disciplines. (4) Processing strategies to fabricate ceramic components from preceramic polymers. (5) Discussion and presentation of several examples of possible real-life applications that take advantage of the special characteristics of preceramic polymers. Note: In the past, a wide range of specialized international symposia have been devoted to PDCs, in particular organized by the American Ceramic Society, the European Materials Society, and the Materials Research Society. Most of the reviews available on PDCs are either not up to date or deal with only a subset of preceramic polymers and ceramics (e.g., silazanes to produce SiCN-based ceramics). Thus, this review is focused on a large number of novel data and developments, and contains materials from the literature but also from sources that are not widely available. [source]


Stress-Corrosion Cracking of Silicon Carbide Fiber/Silicon Carbide Composites

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2000
Russell H. Jones
Ceramic-matrix composites are being developed to operate at elevated temperatures and in oxidizing environments. Considerable improvements have been made in the creep resistance of SiC fibers and, hence, in the high-temperature properties of SiC fiber/SiC (SiCf/SiC) composites; however, more must be known about the stability of these materials in oxidizing environments before they are widely accepted. Experimental weight change and crack growth data support the conclusion that the oxygen-enhanced crack growth of SiCf/SiC occurs by more than one mechanism, depending on the experimental conditions. These data suggest an oxidation embrittlement mechanism (OEM) at temperatures <1373 K and high oxygen pressures and an interphase removal mechanism (IRM) at temperatures of ,700 K and low oxygen pressures. The OEM results from the reaction of oxygen with SiC to form a glass layer on the fiber or within the fiber,matrix interphase region. The fracture stress of the fiber is decreased if this layer is thicker than a critical value (d > dc) and the temperature below a critical value (T < Tg), such that a sharp crack can be sustained in the layer. The IRM results from the oxidation of the interfacial layer and the resulting decrease of stress that is carried by the bridging fibers. Interphase removal contributes to subcritical crack growth by decreasing the fiber-bridging stresses and, hence, increasing the crack-tip stress. The IRM occurs over a wide range of temperatures for d < dc and may occur at T > Tg for d > dc. This paper summarizes the evidence for the existence of these two mechanisms and attempts to define the conditions for their operation. [source]


Deformation Mechanism of Fine-Grained Magnesium Aluminate Spinel Prepared Using an Alkoxide Precursor

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2000
Takeshi Shiono
Polycrystalline MgAl2O4 spinel with high purity and stoichiometric composition was prepared using alkoxide precursors. The average grain size of the polycrystal was fine (1.7 ,m). The deformation mechanism of the polycrystal was investigated in air at temperatures of 1300°,1400°C. At 1300°C, oxygen lattice diffusion controlled the deformation, despite the fine grain size; however, increases in the temperature and applied stress caused cavities to nucleate and grow. Spinel possessed better creep resistance than alumina of comparative grain size. The effective diffusion coefficient was determined as follows: [formula omitted] [source]


Creep Resistant Polymer Nanocomposites Reinforced with Multiwalled Carbon Nanotubes

MACROMOLECULAR RAPID COMMUNICATIONS, Issue 8 2007
Jinglei Yang
Abstract Poly(propylene) (PP) nanocomposites filled with shorter- and longer-aspect-ratio multiwalled carbon nanotubes (MWNTs) were compounded using a twin-screw extruder and an injection moulding machine. It is shown that with only 1 vol.-% of MWNTs, creep resistance of PP can be significantly improved with reduced creep deformation and creep rate at a long-term loading period. Additionally, the creep lifetime of the nanocomposites has been considerably extended by 1,000% compared to that of a neat PP. Three possible mechanisms of load transfer were considered that could contribute to the observed enhancement of creep resistance, which are: (1) fairly good interfacial strength between MWNTs and polymer matrix, (2) increasing immobility of amorphous regions due to nanotubes acting as restriction sites, and (3) high aspect ratio of MWNTs. DSC results showing crystallinity changes in the specimens before and after creep deformation present evidence to confirm these mechanisms. Our results should lead to improved grades of creep resistant polymer nanocomposites for engineering applications. [source]


Positron annihilation study of recrystallization behaviour in Zr2.5%Nb alloy

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 11 2009
S. Mulki
Abstract In CANDU reactors Zr 2.5%Nb alloy is used as pressure tube material due to low neutron absorption cross section, a high resistance to corrosion in water, high strength and good creep resistance. The two phase alloy consists of ,-fcc and ,-bcc. The recrystallization behavior of Zr2.5Nb strongly depends on morphology and distribution of second phase. In this study, the material was deformed to 60% and then was recrystallized in , + , region for different duration (i.e. 2 minutes to 14 days at 700 °C). The recrystallized microstructure was characterized by Orientation Imaging Microscopy (OIM). The evolution of microstructure was examined by Positron Lifetime Spectroscopy and Doppler Broadening measurement for each heat treated samples. Results from positron annihilation studies and other microstructural examination have been used to rationalize the recrystallization aspects, defects and ,-phase distribution. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends

POLYMER COMPOSITES, Issue 3 2004
Vera A. Alvarez
Biodegradable composites based on cellulose derivatives/starch blends reinforced with sisal short fibers were fabricated by injection molding. Results of short-term flexural creep tests are reported to investigate the time-dependence behavior of the composites. Fiber content and temperature effects are also considered, taking into account various methods and equations. At short times, a creep power law is employed. A master curve with the Arrhenius model is used to determine the creep resistance at longer times and different temperatures. Good fitting of the experimental results with the four-parameter model is reported, leading to a relationship between the observed creep behavior and the composite morphology. The addition of sisal fibers to the polymeric matrix promotes a significant improvement of the composite creep resistance. Polym. Compos. 25:280,288, 2004. © 2004 Society of Plastics Engineers. [source]


Creep and recovery behavior of novel organic-inorganic polymer hybrids

POLYMER COMPOSITES, Issue 2 2002
Sunil B. Adalja
A novel class of organic-inorganic polymer hybrids were developed by meltblending up to 50 (v/v) % [about 83 (w/w) %] tin-based polyphosphate glass (Pglass) and low-density polyethylene (LDPE) in conventional plastics processing equipment. The creep and recovery behavior of these polymer hybrids at 30°C were studied to understand the effect of the Pglass on the creep resistance of the LDPE. The results suggest that the Pglass acts as a reinforcement and an increase in the Pglass loading leads to significantly lower creep strains. This creep resistance is further enhanced by pretreating the Pglass with coupling agents prior to incorporating them into the Pglass-LDPE hybrids. The experimental creep compliance of these materials conformed excellently with empirical power-law equation and a modified Burger's model, suggesting that the materials are linearly viscoelastic under the test conditions. [source]