Home About us Contact | |||
Cranial Regions (cranial + regions)
Selected AbstractsHeritability of human cranial dimensions: comparing the evolvability of different cranial regionsJOURNAL OF ANATOMY, Issue 1 2009Neus Martínez-Abadías Abstract Quantitative craniometrical traits have been successfully incorporated into population genetic methods to provide insight into human population structure. However, little is known about the degree of genetic and non-genetic influences on the phenotypic expression of functionally based traits. Many studies have assessed the heritability of craniofacial traits, but complex patterns of correlation among traits have been disregarded. This is a pitfall as the human skull is strongly integrated. Here we reconsider the evolutionary potential of craniometric traits by assessing their heritability values as well as their patterns of genetic and phenotypic correlation using a large pedigree-structured skull series from Hallstatt (Austria). The sample includes 355 complete adult skulls that have been analysed using 3D geometric morphometric techniques. Heritability estimates for 58 cranial linear distances were computed using maximum likelihood methods. These distances were assigned to the main functional and developmental regions of the skull. Results showed that the human skull has substantial amounts of genetic variation, and a t -test showed that there are no statistically significant differences among the heritabilities of facial, neurocranial and basal dimensions. However, skull evolvability is limited by complex patterns of genetic correlation. Phenotypic and genetic patterns of correlation are consistent but do not support traditional hypotheses of integration of the human shape, showing that the classification between brachy- and dolicephalic skulls is not grounded on the genetic level. Here we support previous findings in the mouse cranium and provide empirical evidence that covariation between the maximum widths of the main developmental regions of the skull is the dominant factor of integration in the human skull. [source] Which cranial regions reflect molecular distances reliably in humans?AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2009Evidence from three-dimensional morphology Knowledge of the degree to which various subsets of morphological data reflect molecular relationships is crucial for studies attempting to estimate genetic relationships from patterns of morphological variation. This study assessed the phylogenetic utility of six different human cranial regions, plus the entire cranium. Three-dimensional landmark data were collected for 83 landmarks from samples of skulls from 14 modern human populations. The data were subsequently divided into anatomical regions: basicranium, upper face, mandible, temporal bone, upper jaw, cranial vault, and a subset of points from around the entire cranium. Depictions of population molecular distances were calculated using published data on microsatellites for the same or closely related populations. Distances based on morphological variation of each of the anatomical regions were compared with molecular distances, and the correlations assessed. The morphology of the basicranium, temporal bone, upper face, and entire cranium demonstrated the highest correlations with molecular distances. The morphology of the mandible, upper jaw, and cranial vault, as measured here, were not significantly correlated with molecular distances. As the three-dimensional morphology of the temporal bone, upper face, basicranium, and entire cranium appear to consistently reflect genetic relationships in humans, especially with more reliability than the cranial vault, it would be preferable to focus on these regions when attempting to determine the genetic relationships of human specimens with no molecular data. Am. J.Hum. Biol., 2009. © 2008 Wiley-Liss, Inc. [source] Congruence of individual cranial bone morphology and neutral molecular affinity patterns in modern humansAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 2 2009Noreen von Cramon-Taubadel Abstract Recent studies have demonstrated that the shape of the human temporal bone is particularly strongly correlated with neutral genetic expectation, when compared against other cranial regions, such as the vault, face, and basicranium. In turn, this has led to suggestions that the temporal bone is particularly reliable in analyses of primate phylogeny and human population history. While several reasons have been suggested to explain the temporal bone's strong fit with neutral expectation, the temporal bone has never systematically been compared against other individual cranial bones defined using the same biological criteria. Therefore, it is currently unknown whether the shapes of all cranial bones possess reliable information regarding neutral genetic evolution, or whether the temporal bone is unique in this respect. This study tests the hypothesis that the human temporal bone is more congruent with neutral expectation than six other individual cranial bones by correlating population affinity matrices generated using neutral genetic and 3D craniometric data. The results demonstrate that while the temporal bone shows the absolute strongest correlation with neutral genetic data compared with all other bones, it is not statistically differentiated from the sphenoid, frontal, and parietal bones in this regard. Potential reasons for the temporal bone's consistently strong fit with neutral expectation, such as its overall anatomical complexity and/or its contribution to the architecture of the basicranium, are examined. The results suggest that future phylogenetic and taxonomic studies would benefit from considering the shape of the entire cranium minus those regions that deviate most from neutrality. Am J Phys Anthropol, 2009. © 2009 Wiley-Liss, Inc. [source] Evidence for the Influence of Diet on Cranial Form and RobusticityTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2010Rachel A. Menegaz Abstract The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood. Micro-CT was used to quantify and visualize morphological variation between treatment groups. Results reveal trends (P < 0.10) for greater outer table thickness of the frontal bones, zygomatic height, and cranial globularity in rabbits raised on a hard/tough diet. Furthermore, analyses of three-dimensional coordinate landmark data indicate that the basicrania of hard/tough diet rabbits exhibit more robust middle cranial fossae and pterygoid plates, as well as altered overall morphology of the caudal cranial fossa. Thus, long term increases in masticatory loads may result in thickening of the bones of the neurocranial vault and/or altering the curvature of the walls. Differences in cranial regions not directly associated with the generation or resistance of masticatory forces (i.e., frontal bone, basicranium) may be indirectly correlated with diet-induced variation in maxillomandibular morphology. These findings also suggest that long-term variation in masticatory forces associated with differences in dietary properties can contribute to the complex and multifactorial development of neurocranial morphology. Anat Rec, 293:630,641, 2010. © 2010 Wiley-Liss, Inc. [source] Human cranial anatomy and the differential preservation of population history and climate signaturesTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 12 2006Katerina Harvati Abstract Cranial morphology is widely used to reconstruct evolutionary relationships, but its reliability in reflecting phylogeny and population history has been questioned. Some cranial regions, particularly the face and neurocranium, are believed to be influenced by the environment and prone to convergence. Others, such as the temporal bone, are thought to reflect more accurately phylogenetic relationships. Direct testing of these hypotheses was not possible until the advent of large genetic data sets. The few relevant studies in human populations have had intriguing but possibly conflicting results, probably partly due to methodological differences and to the small numbers of populations used. Here we use three-dimensional (3D) geometric morphometrics methods to test explicitly the ability of cranial shape, size, and relative position/orientation of cranial regions to track population history and climate. Morphological distances among 13 recent human populations were calculated from four 3D landmark data sets, respectively reflecting facial, neurocranial, and temporal bone shape; shape and relative position; overall cranial shape; and centroid sizes. These distances were compared to neutral genetic and climatic distances among the same, or closely matched, populations. Results indicate that neurocranial and temporal bone shape track neutral genetic distances, while facial shape reflects climate; centroid size shows a weak association with climatic variables; and relative position/orientation of cranial regions does not appear correlated with any of these factors. Because different cranial regions preserve population history and climate signatures differentially, caution is suggested when using cranial anatomy for phylogenetic reconstruction. Anat Rec Part A, 2006. © 2006 Wiley-Liss, Inc. [source] |