Home About us Contact | |||
Cranial Neural Crest (cranial + neural_crest)
Terms modified by Cranial Neural Crest Selected AbstractsTeratogenic effect of bis-diamine on embryonic rat heartCONGENITAL ANOMALIES, Issue 3 2000Masao Nakagawa ABSTRACT, Bis-diamine induces conotruncal anomalies including persistent truncus arteriosus, tetralogy of Fallot, interruption of the aortic arch, and ventricular septal defect in rat embryos when administered to the mother. Bis-diamine also induces extracardiac malformations including thymic hypoplasia, facial dysmorphism, forelimb anomalies and diaphragmatic hernia. However, the teratogenic mechanisms of this chemical in early developing rat hearts have not been fully established. Chimeric studies in chick and quail embryos demonstrated that the cranial neural crest cells reached the cardiac outflow tract, contributing to aorticopulmonary and truncal septation. Since an ablation of the cranial neural crest also produced the conotruncal anomalies, bis-diamine is proposed to disturb the normal migration of cardiac neural crest cells to the heart. Based on our data concerning cardiac anomalies induced by bis-diamine, we reviewed how the cardiac malformations were morphologically established in early developing rat hearts. Our data showed that 1) cardiovascular anomalies induced by bis-diamine are time- and species or strain- dependent. 2) bis-diamine reduces the number of neural crest cells migrating to participate in the conotruncal septation, 3) bis-diamine induces anomalous coronary arteries, thin ventricular walls and epicardial defects, and 4) some embryos cultured in the medium containing bis-diamine had extra-cardiac abnormalities including abnormal location of the otic placodes and delay in mid brain closure. Conclusively, bis-diamine does not appear to merely affect the cardiac development, but rather disturbs normal development of all the organs contributed to by neural crest cells. [source] Role of Wnt signaling in the biology of the periodontiumDEVELOPMENTAL DYNAMICS, Issue 1 2010Scott M. Rooker Abstract Continuously erupting teeth have associated with them a continuously regenerating periodontal ligament, but the factors that control this amazing regenerative potential are unknown. We used genetic strategies to show that the periodontal ligament arises from the cranial neural crest. Despite their histological similarity, the periodontal ligament of continuously erupting incisor teeth differs dramatically from the periodontal ligament of molar teeth. The most notable difference was in the distribution of Wnt responsive cells in the incisor periodontal ligament, which coincided with regions of periodontal ligament cell proliferation. We discuss these findings in the context of dental tissue regeneration. Developmental Dynamics 239:140,147, 2010. © 2009 Wiley-Liss, Inc. [source] PDGFR-, signaling is critical for tooth cusp and palate morphogenesisDEVELOPMENTAL DYNAMICS, Issue 1 2005Xun Xu Abstract Platelet-derived growth factor receptor alpha (PDGFR-,) and PDGF ligands are key regulators for embryonic development. Although Pdgfr, is spatially expressed in the cranial neural crest (CNC)-derived odontogenic mesenchyme, mice deficient for Pdgfr, are embryonic lethal, making it impossible to investigate the functional significance of PDGF signaling in regulating the fate of CNC cells during tooth morphogenesis. Taking advantage of the kidney capsule assay, we investigated the biological function of PDGF signaling in regulating tooth morphogenesis. Pdgfr, and Pdgfa are specifically and consistently expressed in the CNC-derived odontogenic mesenchyme and the dental epithelium, respectively, throughout all stages of tooth development, suggesting a paracrine function of PDGF signaling in regulating tooth morphogenesis. Highly concentrated expression patterns of Pdgfr, and Pdgfa are associated with the developing dental cusp, suggesting possible functional importance of PDGF signaling in regulating cusp formation. Loss of the Pdgfr, gene does not affect proper odontoblasts proliferation and differentiation in the CNC-derived odontogenic mesenchyme but perturbs the formation of extracellular matrix and the organization of odontoblast cells at the forming cusp area, resulting in dental cusp growth defect. Pdgfr,,/, mice have complete cleft palate. We show that the cleft palate in Pdgfr, mutant mice results from an extracellular matrix defect within the CNC-derived palatal mesenchyme. The midline epithelium of the mutant palatal shelf remains functionally competent to mediate palatal fusion once the palatal shelves are placed in close contact in vitro. Collectively, our data suggests that PDGFR, and PDGFA are critical regulators for the continued epithelial,mesenchymal interaction during tooth and palate morphogenesis. Disruption of PDGFR, signaling disturbs the growth of dental cusp and interferes with the critical extension of palatal shelf during craniofacial development. Developmental Dynamics 232:75,84, 2005. © 2004 Wiley-Liss, Inc. [source] Cell fate and timing in the evolution of neural crest and mesoderm development in the head region of amphibians and lungfishesACTA ZOOLOGICA, Issue 2009Rolf Ericsson Abstract Our research on the evolution of head development focuses on understanding the developmental origins of morphological innovations and involves asking questions like: How flexible (or conserved) are cell fates, patterns of cell migration or the timing of developmental events (heterochrony)? How do timing changes, or changes in life history affect head development and growth? Our ,model system' is a comparison between lungfishes and representatives from all three extant groups of amphibians. Within anuran amphibians, major changes in life history such as the repeated evolution of larval specializations (e.g. carnivory), or indeed the loss of a free-swimming larva, allows us to test for developmental constraints. Cell migration and cell fate are conserved in cranial neural crest cells in all vertebrates studied so far. Patterning and developmental anatomy of cranial neural crest and head mesoderm cells are conserved within amphibians and even between birds, mammals and amphibians. However, the specific formation of hypobranchial muscles from ventral somitic processes shows variation within tetrapods. The evolution of carnivorous larvae in terminal taxa is correlated with changes in both pattern and timing of head skeletal and muscle development. Sequence-heterochronic changes are correlated with feeding mode in terminal taxa and with phylogenetic relatedness in basal branches of the phylogeny. Eye muscles seem to form a developmental module that can evolve relatively independently from other head muscles, at least in terms of timing of muscle differentiation. [source] Early differentiation and migration of cranial neural crest in the opossum, Monodelphis domesticaEVOLUTION AND DEVELOPMENT, Issue 2 2003Janet L. Vaglia SUMMARY Marsupial mammals are born at a highly altricial state. Nonetheless, the neonate must be capable of considerable functional independence. Comparative studies have shown that in marsupials the morphogenesis of many structures critical to independent function are advanced relative to overall development. Many skeletal and muscular elements in the facial region show particular heterochrony. Because neural crest cells are crucial to forming and patterning much of the face, this study investigates whether the timing of cranial neural crest differentiation is also advanced. Histology and scanning electron microscopy of Monodelphis domestica embryos show that many aspects of cranial neural crest differentiation and migration are conserved in marsupials. For example, as in other vertebrates, cranial neural crest differentiates at the neural ectoderm/epidermal boundary and migrates as three major streams. However, when compared with other vertebrates, a number of timing differences exist. The onset of cranial neural crest migration is early relative to both neural tube development and somite formation in Monodelphis. First arch neural crest cell migration is particularly advanced and begins before any somites appear or regional differentiation exists in the neural tube. Our study provides the first published description of cranial neural crest differentiation and migration in marsupials and offers insight into how shifts in early developmental processes can lead to morphological change. [source] Cranial neural crest cell migration in the Australian lungfish, Neoceratodus forsteriEVOLUTION AND DEVELOPMENT, Issue 4 2000Pierre Falck SUMMARY A crucial role for the cranial neural crest in head development has been established for both actinopterygian fishes and tetrapods. It has been claimed, however, that the neural crest is unimportant for head development in the Australian lungfish (Neoceratodus forsteri ,), a member of the group (Dipnoi) which is commonly considered to be the living sister group of the tetrapods. In the present study, we used scanning electron microscopy to study cranial neural crest development in the Australian lungfish. Our results, contrary to those of Kemp, show that cranial neural crest cells do emerge and migrate in the Australian lungfish in the same way as in other vertebrates, forming mandibular, hyoid, and branchial streams. The major difference is in the timing of the onset of cranial neural crest migration. It is delayed in the Australian lungfish in comparison with their living sister group the Lissamphibia. Furthermore, the delay in timing between the emergence of the hyoid and branchial crest streams is very long, indicating a steeper anterior-posterior gradient than in amphibians. We are now extending our work on lungfish head development to include experimental studies (ablation of selected streams of neural crest cells) and fate mapping (using fluoresent tracer dyes such as DiI) to document the normal fate as well as the role in head patterning of the cranial neural crest in the Australian lungfish. [source] Neurulation in the cranial region , normal and abnormalJOURNAL OF ANATOMY, Issue 5 2005Andrew J. Copp Abstract Cranial neurulation is the embryonic process responsible for formation of the brain primordium. In the mouse embryo, cranial neurulation is a piecemeal process with several initiation sites and two neuropores. Variation in the pattern of cranial neurulation occurs in different mouse strains, and a simpler version of this morphogenetic scheme has been described in human embryos. Exencephaly is more common in females than in males, an unexplained phenomenon seen in both mice and humans. As the cranial neural tube closes, a critical morphogenetic event is the formation of dorsolateral bending points near the neural fold tips, which enables subsequent midline fusion of the neural folds. Many mutant and gene-targeted mouse strains develop cranial neural tube defects, and analysis of the underlying molecular defects identifies several requirements for normal dorsolateral bending. These include a functional actin cytoskeleton, emigration of the cranial neural crest, spatio-temporally regulated apoptosis, and a balance between cell proliferation and the onset of neuronal differentiation. A small number of mouse mutants exhibit craniorachischisis, a combined brain and spine neurulation defect. Recent studies show that disturbance of a single molecular signalling cascade, the planar cell polarity pathway, is implicated in mutants with this defect. [source] How to tweak a beak: molecular techniques for studying the evolution of size and shape in Darwin's finches and other birdsBIOESSAYS, Issue 1 2007Richard A. Schneider A flurry of technological advances in molecular, cellular and developmental biology during the past decade has provided a clearer understanding of mechanisms underlying phenotypic diversification. Building upon such momentum, a recent paper tackles one of the foremost topics in evolution, that is the origin of species-specific beak morphology in Darwin's finches.1 Previous work involving both domesticated and wild birds implicated a well-known signaling pathway (i.e. bone morphogenetic proteins) and one population of progenitor cells in particular (i.e. cranial neural crest), as primary factors for establishing beak size and shape. But these results were limited in their ability to explain fully the morphogenetic bases of patterned outgrowth. So in a quest to identify novel genes whose expression correlated with differences in beak anatomy among Darwin's finches, a DNA microarray approach was undertaken using tissues harvested from the Galápagos Islands. The results are striking and point to a protein called calmodulin, which is a mediator of cellular calcium signaling, as a key determinant of beak length. BioEssays 29: 1,6, 2007. © 2006 Wiley Periodicals, Inc. [source] |