Cranial Form (cranial + form)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Evidence for the Influence of Diet on Cranial Form and Robusticity

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2010
Rachel A. Menegaz
Abstract The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood. Micro-CT was used to quantify and visualize morphological variation between treatment groups. Results reveal trends (P < 0.10) for greater outer table thickness of the frontal bones, zygomatic height, and cranial globularity in rabbits raised on a hard/tough diet. Furthermore, analyses of three-dimensional coordinate landmark data indicate that the basicrania of hard/tough diet rabbits exhibit more robust middle cranial fossae and pterygoid plates, as well as altered overall morphology of the caudal cranial fossa. Thus, long term increases in masticatory loads may result in thickening of the bones of the neurocranial vault and/or altering the curvature of the walls. Differences in cranial regions not directly associated with the generation or resistance of masticatory forces (i.e., frontal bone, basicranium) may be indirectly correlated with diet-induced variation in maxillomandibular morphology. These findings also suggest that long-term variation in masticatory forces associated with differences in dietary properties can contribute to the complex and multifactorial development of neurocranial morphology. Anat Rec, 293:630,641, 2010. © 2010 Wiley-Liss, Inc. [source]


Geographical and taxonomic influences on cranial variation in red colobus monkeys (Primates, Colobinae): introducing a new approach to ,morph' monkeys

GLOBAL ECOLOGY, Issue 2 2009
Andrea Cardini
ABSTRACT Aim, To provide accurate but parsimonious quantitative descriptions of clines in cranial form of red colobus, to partition morphological variance into geographical, taxonomic and structured taxonomic components, and to visually summarize clines in multivariate shape data using a method which produces results directly comparable to both univariate studies of geographical variation and standard geometric morphometric visualization of shape differences along vectors. Location, Equatorial Africa. Methods, Sixty-four three-dimensional cranial landmarks were measured on 276 adult red colobus monkeys sampled over their entire distribution. Geometric morphometric methods were applied, and size and shape variables regressed onto geographical coordinates using linear and curvilinear models. Model selection was done using the second-order Akaike information criterion. Components of variation related to geography, taxon or their combined effect were partitioned using partial regresssion. Multivariate trends in clinal shape were summarized using principal components of predictions from regressions, plotting vector scores on maps as for univariate size, and visualizing differences along main axes of clinal shape variation using surface rendering. Results, Significant clinal variation was found in size and shape. Clines were similar in females and males. Trend surface analysis tended to be more accurate and parsimonious than alternative models in predicting morphology based on geography. Cranial form was relatively paedomorphic in East Africa and peramorphic in central Africa. Most taxonomic variation was geographically structured. However, taxonomic differences alone accounted for a larger proportion of total explained variance in shape (up to 40%) than in size (, 20%). Main conclusions, A strong cline explained most of the observed size variation and a significant part of the shape differences of red colobus crania. The pattern of geographical variation was largely similar to that previously reported in vervets, despite different habitat preferences (arboreal versus terrestrial) and a long period since divergence (c. 14,15 Myr). This suggests that some aspects of morphological divergence in both groups may have been influenced by similar environmental, geographical and historical factors. Cranial size is likely to be evolutionarily more labile and thus better reflects the influence of recent environmental changes. Cranial shape could be more resilient to change and thus better reflects phylogenetically informative differences. [source]


Evolution of cranial development and the role of neural crest: insights from amphibians

JOURNAL OF ANATOMY, Issue 5 2005
James Hanken
Abstract Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog. [source]


Implications of predatory specialization for cranial form and function in canids

JOURNAL OF ZOOLOGY, Issue 3 2009
G. J. Slater
Abstract The shape of the cranium varies widely among members of the order Carnivora, but the factors that drive the evolution of differences in shape remain unclear. Selection for increased bite force, bite speed or skull strength may all affect cranial morphology. We investigated the relationship between cranial form and function in the trophically diverse dog family, Canidae, using linear morphometrics and finite element (FE) analyses that simulated the internal and external forces that act on the skull during the act of prey capture and killing. In contrast to previous FE-based studies, we compared models using a newly developed method that removes the effects of size and highlights the relationship between shape and performance. Cranial shape varies among canids based on diet, and different selective forces presumably drove evolution of these phenotypes. The long, narrow jaws of small prey specialists appear to reflect selection for fast jaw closure at the expense of bite force. Generalists have intermediate jaw dimensions and produce moderate bite forces, but their crania are comparable in strength to those of small prey specialists. Canids that take large prey have short, broad jaws, produce the largest bite forces and possess very strong crania. Our FE simulations suggest that the remarkable strength of skulls of large prey specialists reflect the additional ability to resist extrinsic loads that may be encountered while struggling with large prey items. [source]


A geometric morphometric approach to the quantification of population variation in sub-Saharan African crania

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 1 2010
Daniel Franklin
We report here on new data examining cranial variation in 18 modern human sub-Saharan African populations. Previously, we investigated variation within southern Africa; we now extend our analyses to include a series of Central, East, and West African crania, to further knowledge of the relationships between, and variation and regional morphological patterning in, those populations. The sample comprises 377 male individuals; the three-dimensional coordinates of 96 landmarks are analyzed using Procrustes-based methods. Interpopulation variation is examined by calculating shape distances between groups, which are compared using resampling statistics and parametric tests. Phenotypic variance, as a proxy for genetic variance, is measured and compared across populations. Principal components and cluster analyses are employed to explore relationships between the populations. Shape differences are visualized using three-dimensional rendered models. Observed disparity patterns imply a mix of differences and similarities across populations, with no apparent support for genetic bottlenecks, which is likely a consequence of migrations that may have influenced differences in cranial form; supporting data are found in recent molecular studies. The Pygmy sample had the most distinctive cranial morphology; characteristically small in size with marked prognathism. These features characterized, although less strongly, the neighboring Bateke, and are possibly related to similar selective pressures in conjunction with interbreeding. Small cranial size is also involved in the considerable distinctiveness of the San and Khoikhoi. The statistical procedures applied in this study afford a powerful and robust means of quantifying and visualizing the magnitude and pattern of cranial variation between sub-Saharan African populations. Am. J. Hum. Biol., 2010. © 2009 Wiley-Liss, Inc. [source]


Relationship of cranial robusticity to cranial form, geography and climate in Homo sapiens

AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 1 2010
Karen L. Baab
Abstract Variation in cranial robusticity among modern human populations is widely acknowledged but not well-understood. While the use of "robust" cranial traits in hominin systematics and phylogeny suggests that these characters are strongly heritable, this hypothesis has not been tested. Alternatively, cranial robusticity may be a response to differences in diet/mastication or it may be an adaptation to cold, harsh environments. This study quantifies the distribution of cranial robusticity in 14 geographically widespread human populations, and correlates this variation with climatic variables, neutral genetic distances, cranial size, and cranial shape. With the exception of the occipital torus region, all traits were positively correlated with each other, suggesting that they should not be treated as individual characters. While males are more robust than females within each of the populations, among the independent variables (cranial shape, size, climate, and neutral genetic distances), only shape is significantly correlated with inter-population differences in robusticity. Two-block partial least-squares analysis was used to explore the relationship between cranial shape (captured by three-dimensional landmark data) and robusticity across individuals. Weak support was found for the hypothesis that robusticity was related to mastication as the shape associated with greater robusticity was similar to that described for groups that ate harder-to-process diets. Specifically, crania with more prognathic faces, expanded glabellar and occipital regions, and (slightly) longer skulls were more robust than those with rounder vaults and more orthognathic faces. However, groups with more mechanically demanding diets (hunter-gatherers) were not always more robust than groups practicing some form of agriculture. Am J Phys Anthropol, 2010. © 2009 Wiley-Liss, Inc. [source]


Evidence for the Influence of Diet on Cranial Form and Robusticity

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 4 2010
Rachel A. Menegaz
Abstract The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood. Micro-CT was used to quantify and visualize morphological variation between treatment groups. Results reveal trends (P < 0.10) for greater outer table thickness of the frontal bones, zygomatic height, and cranial globularity in rabbits raised on a hard/tough diet. Furthermore, analyses of three-dimensional coordinate landmark data indicate that the basicrania of hard/tough diet rabbits exhibit more robust middle cranial fossae and pterygoid plates, as well as altered overall morphology of the caudal cranial fossa. Thus, long term increases in masticatory loads may result in thickening of the bones of the neurocranial vault and/or altering the curvature of the walls. Differences in cranial regions not directly associated with the generation or resistance of masticatory forces (i.e., frontal bone, basicranium) may be indirectly correlated with diet-induced variation in maxillomandibular morphology. These findings also suggest that long-term variation in masticatory forces associated with differences in dietary properties can contribute to the complex and multifactorial development of neurocranial morphology. Anat Rec, 293:630,641, 2010. © 2010 Wiley-Liss, Inc. [source]


The frequency of metopism in Anatolian populations dated from the Neolithic to the first quarter of the 20th century

CLINICAL ANATOMY, Issue 6 2008
S. Ero
Abstract Metopism, which is defined as a condition in which the two pieces of the frontal bone fail to merge in early childhood, displays varying degrees of incidence. In this study, the variation of the frequency of metopism across historical periods is investigated on the skulls of 487 adults from 12 different Ancient Anatolian populations dated to various periods of history ranging from the Neolithic to the first quarter of the 20th century. In addition, the study also examines the relationship of metopism to sex and cranial form. It is revealed that the frequency of metopism showed a relative increase across time periods in Anatolia after the Neolithic Period, with the exception of the Cevizcio,lu Çiftli,i population. However, no significant relationship was found between metopism and cranial form or sex. It is found that the frequency of metopism in Ancient Anatolia had a distribution range of 3.3,14.9%. This distribution shows that the inhabitants of Anatolia have a heterogeneous genetic make-up due to the geographical situation of Anatolia, which has been open to gene flow both in the past and at present. Clin. Anat. 21:471,478, 2008. © 2008 Wiley-Liss, Inc. [source]