Cranial Development (cranial + development)

Distribution by Scientific Domains


Selected Abstracts


Cranial expression of class 3 secreted semaphorins and their neuropilin receptors

DEVELOPMENTAL DYNAMICS, Issue 4 2003
John K. Chilton
Abstract The semaphorin family of chemorepellents and their receptors the neuropilins are implicated in a variety of cellular processes, including axon guidance and cell migration. Semaphorins may bind more than one neuropilin or a heterodimer of both, thus a detailed knowledge of their expression patterns may reveal possible cases of redundancy or mutual antagonism. To assess their involvement in cranial development, we cloned fragments of the chick orthologues of Sema3B and Sema3F. We then carried out mRNA in situ hybridisation of all six class 3 semaphorins and both neuropilins in the embryonic chick head. We present evidence for spatiotemporal regulation of these molecules in the brainstem and developing head, including the eye, ear, and branchial arches. These expression patterns provide a basis for functional analysis of semaphorins and neuropilins in the development of axon projections and the morphogenesis of cranial structures. Developmental Dynamics 228:726,733, 2003. © 2003 Wiley-Liss, Inc. [source]


Evolution of cranial development and the role of neural crest: insights from amphibians

JOURNAL OF ANATOMY, Issue 5 2005
James Hanken
Abstract Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog. [source]


Chondrocranial development in larval Rana sylvatica (Anura: Ranidae): Morphometric analysis of cranial allometry and ontogenetic shape change

JOURNAL OF MORPHOLOGY, Issue 2 2002
Peter M. Larson
Abstract This study provides baseline quantitative data on the morphological development of the chondrocranium in a larval anuran. Both linear and geometric morphometric methods are used to quantitatively analyze size-related shape change in a complete developmental series of larvae of the wood frog, Rana sylvatica. The null hypothesis of isometry was rejected in all geometric morphometric and most linear morphometric analyses. Reduced major axis regressions of 11 linear chondrocranial measurements on size indicate a mixture of allometric and isometric scaling. Measurements in the otic and oral regions tend to scale with negative allometry and those associated with the palatoquadrate and muscular process scale with isometry or positive allometry. Geometric morphometric analyses, based on a set of 11 chondrocranial landmarks, include linear regression of relative warp scores and multivariate regression of partial warp scores and uniform components on log centroid size. Body size explains about one-quarter to one-third of the total shape variation found in the sample. Areas of regional shape transformation (e.g., palatoquadrate, otic region, trabecular horns) are identified by thin-plate spline deformation grids and are concordant with linear morphometric results. Thus, the anuran chondrocranium is not a static structure during premetamorphic stages and allometric patterns generally follow scaling predictions for tetrapod cranial development. Potential implications regarding larval functional morphology, cranial development, and chondrocranial evolution in anurans are discussed. J. Morphol. 252:131,144, 2002. © 2002 Wiley-Liss, Inc. [source]