Crack Orientations (crack + orientation)

Distribution by Scientific Domains


Selected Abstracts


Synchrotron-Based Micro-CT and Refraction-Enhanced Micro-CT for Non-Destructive Materials Characterisation,

ADVANCED ENGINEERING MATERIALS, Issue 6 2009
Bernd R. Müller
Abstract X-ray computed tomography is an important tool for non-destructively evaluating the 3-D microstructure of modern materials. To resolve material structures in the micrometer range and below, high brilliance synchrotron radiation has to be used. The Federal Institute for Materials Research and Testing (BAM) has built up an imaging setup for micro-tomography and -radiography (BAMline) at the Berliner storage ring for synchrotron radiation (BESSY). In computed tomography, the contrast at interfaces within heterogeneous materials can be strongly amplified by effects related to X-ray refraction. Such effects are especially useful for materials of low absorption or mixed phases showing similar X-ray absorption properties that produce low contrast. The technique is based on ultra-small-angle scattering by microstructural elements causing phase-related effects, such as refraction and total reflection. The extraordinary contrast of inner surfaces is far beyond absorption effects. Crack orientation and fibre/matrix debonding in plastics, polymers, ceramics and metal-matrix-composites after cyclic loading and hydro-thermal aging can be visualized. In most cases, the investigated inner surface and interface structures correlate to mechanical properties. The technique is an alternative to other attempts on raising the spatial resolution of CT machines. [source]


The Geysers geothermal field: results from shear-wave splitting analysis in a fractured reservoir

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2005
Maya Elkibbi
SUMMARY Clear shear-wave splitting (SWS) is observed in 1757 high signal-to-noise ratio microearthquake seismograms recorded by two high density seismic arrays in the NW and the SE Geysers geothermal fields in California. The Geysers reservoir rocks within the study area are largely composed of lithic, low-grade metamorphism, well-fractured metagraywackes which commonly lack schistosity, warranting the general assumption that shear-wave splitting here is induced solely by stress-aligned fracturing in an otherwise isotropic medium. The high quality of observed shear-wave splitting parameters (fast shear-wave polarization directions and time delays) and the generally good data spatial coverage provide an unprecedented opportunity to demonstrate the applicability and limitations of the shear-wave splitting approach to successfully detect fracture systems in the shallow crust based on SWS field observations from a geothermal reservoir. Results from borehole stations in the NW Geysers indicate that polarization orientations range between N and N60E; while in the SE Geysers, ground surface stations show polarization directions that are generally N5E, N35E-to-N60E, N75E-to-N85E, and N20W-to-N55W. Crack orientations obtained from observed polarization orientations are in good agreement with independent field evidence, such as cracks in geological core data, tracer tests, locally mapped fractures, and the regional tectonic setting. Time delays range typically between 8 and 40 ms km,1, indicating crack densities well within the norm of fractured reservoirs. The sizeable collection of high resolution shear-wave splitting parameters shows evidence of prevalent vertical to nearly vertical fracture patterns in The Geysers field. At some locations, however, strong variations of SWS parameters with ray azimuth and incident angle within the shear-wave window of seismic stations indicate the presence of more complex fracture patterns in the subsurface. [source]


Analytical and experimental studies on fatigue crack path under complex multi-axial loading

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 4 2006
L. REIS
ABSTRACT In real engineering components and structures, many accidental failures are due to unexpected or additional loadings, such as additional bending or torsion, etc. Fractographical analyses of the failure surface and the crack orientation are helpful for identifying the effects of the non-proportional multi-axial loading. There are many factors that influence fatigue crack paths. This paper studies the effects of multi-axial loading path on the crack path. Two kinds of materials were studied and compared in this paper: AISI 303 stainless steel and 42CrMo4 steel. Experiments were conducted in a biaxial testing machine INSTRON 8800. Six different biaxial loading paths were selected and applied in the tests to observe the effects of multi-axial loading paths on the additional hardening, fatigue life and the crack propagation orientation. Fractographic analyses of the plane orientations of crack initiation and propagation were carried out by optical microscope and SEM approaches. It was shown that the two materials studied had different crack orientations under the same loading path, due to their different cyclic plasticity behaviour and different sensitivity to non-proportional loading. Theoretical predictions of the damage plane were made using the critical plane approaches such as the Brown,Miller, the Findley, the Wang,Brown, the Fatemi,Socie, the Smith,Watson,Topper and the Liu's criteria. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the critical plane models give satisfactory predictions for the orientations of early crack growth of the 42CrMo4 steel, but less accurate predictions were obtained for the AISI 303 stainless steel. This observation appears to show that the applicability of the fatigue models is dependent on the material type and multi-axial microstructure characteristics. [source]


Standing contact fatigue with a cylindrical indenter

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 7 2005
J. DAHLBERG
ABSTRACT A hardened steel cylinder was repeatedly pressed against a flat case-hardened steel specimen that was equally wide as the cylinder was long. Some contact end effects were noted as a result of limited plastic deformation. A strain gauge on the contact surface, just outside the contact and oriented perpendicular to the cylinder detected a surface strain when the cylinder was loaded. The non-zero surface strain was the result of boundary effects of the finite specimen. Four different types of contact fatigue cracks developed in and below the specimen contact surface. The cracks were named lateral, median, contact end and edge cracks. Changes in the measured surface strain values could be used to determine when the lateral and edge cracks developed. The order in which all four crack types typically developed was determined from optical crack observation at test termination, strain measurements and stress computations. Numerical computations using finite-element (FE) analyses were used to verify the surface strain behaviour due to loading and cracking; to verify contact end effects; crack locations and crack orientation by aid of the Findley multi-axial fatigue criterion. [source]


Analytical and experimental studies on fatigue crack path under complex multi-axial loading

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 4 2006
L. REIS
ABSTRACT In real engineering components and structures, many accidental failures are due to unexpected or additional loadings, such as additional bending or torsion, etc. Fractographical analyses of the failure surface and the crack orientation are helpful for identifying the effects of the non-proportional multi-axial loading. There are many factors that influence fatigue crack paths. This paper studies the effects of multi-axial loading path on the crack path. Two kinds of materials were studied and compared in this paper: AISI 303 stainless steel and 42CrMo4 steel. Experiments were conducted in a biaxial testing machine INSTRON 8800. Six different biaxial loading paths were selected and applied in the tests to observe the effects of multi-axial loading paths on the additional hardening, fatigue life and the crack propagation orientation. Fractographic analyses of the plane orientations of crack initiation and propagation were carried out by optical microscope and SEM approaches. It was shown that the two materials studied had different crack orientations under the same loading path, due to their different cyclic plasticity behaviour and different sensitivity to non-proportional loading. Theoretical predictions of the damage plane were made using the critical plane approaches such as the Brown,Miller, the Findley, the Wang,Brown, the Fatemi,Socie, the Smith,Watson,Topper and the Liu's criteria. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the critical plane models give satisfactory predictions for the orientations of early crack growth of the 42CrMo4 steel, but less accurate predictions were obtained for the AISI 303 stainless steel. This observation appears to show that the applicability of the fatigue models is dependent on the material type and multi-axial microstructure characteristics. [source]


Effects of non-proportional loading paths on the orientation of fatigue crack path

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 5 2005
L. REIS
ABSTRACT Fatigue crack path prediction and crack arrest are very important for structural safety. In real engineering structures, there are many factors influencing the fatigue crack paths, such as the material type (microstructure), structural geometry and loading path, etc. In this paper, both experimental and numerical methods are applied to study the effects of loading path on crack orientations. Experiments were conducted on a biaxial testing machine, using specimens made of two steels: 42CrMo4 and CK45 (equivalent to AISI 1045), with six different biaxial loading paths. Fractographical analyses of the plane of the stage I crack propagation were carried out and the crack orientations were measured using optical microscopy. The multiaxial fatigue models, such as the critical plane models and also the energy-based critical plane models, were applied for predicting the orientation of the critical plane. Comparisons of the predicted orientation of the damage plane with the experimental observations show that the shear-based multiaxial fatigue models provide good predictions for stage I crack growth for the ductile materials studied in this paper. [source]


Fretting fatigue crack nucleation in Ti,6Al,4V

FATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 3 2003
J. M. WALLACE
ABSTRACT Fretting fatigue crack nucleation in Ti,6Al,4V when fretted against itself is investigated to determine the influence of contact pressure, stress amplitude, stress ratio, and contact geometry on the degradation process. For the test parameters considered in this investigation, a partial slip condition generally prevails. The resulting fatigue modifying factors are 0.53 or less. Cycles to crack nucleation, frictional force evolution, crack orientations and their relationship to the microstructure are reported. The crack nucleation process volume is of the same order as the microstructural length scales with several non-dominant cracks penetrating 50 ,m or less. The effective coefficient of friction increases during early part of fretting. Observations suggest that cyclic plastic deformation is extensive in the surface layers and that cyclic ratchetting of plastic strain may play a key role in nucleation of the fretting cracks. A Kitagawa,Takahashi diagram is used to relate the depth of fretting damage to the modifying factor on fatigue life. [source]