Home About us Contact | |||
Crack Model (crack + model)
Selected AbstractsAn efficient three-dimensional solid finite element dynamic analysis of reinforced concrete structuresEARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 2 2006K. V. Spiliopoulos Abstract Most of the finite element analyses of reinforced concrete structures are restricted to two-dimensional elements. Three-dimensional solid elements have rarely been used although nearly all reinforced concrete structures are under a triaxial stress state. In this work, a three-dimensional solid element based on a smeared fixed crack model that has been used in the past mainly for monotonic static loading analysis is extended to cater for dynamic analysis. The only material parameter that needs to be input for this model is the uniaxial compressive strength of concrete. Steel bars are modelled as uniaxial elements and an embedded formulation allows them to have any orientation inside the concrete elements. The proposed strategy for loading or unloading renders a numerical procedure which is stable and efficient. The whole process is applied to two RC frames and compared against existing experiments in the literature. Results show that the proposed approach may adequately be used to predict the dynamic response of a structure. Copyright © 2005 John Wiley & Sons, Ltd. [source] Elastoplastic modelling of subsurface crack growth in rail/wheel contact problemsFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2007R. LUNDÉN ABSTRACT Propagation of small subsurface cracks subjected to shear under repeated rolling contact load is studied. An analytical crack model (Dugdale) with plastic strips at the two crack tips is employed. Compressive stresses promoting crack closure and friction between crack faces are considered. The triaxial stress state is used in the yield criterion. A damage criterion is suggested based on experimental LCF data. In a numerical study, critical crack lengths are found below which propagation of an existing crack should be effectively suppressed. [source] Flaking failure originating from a single surface crack in silicon nitride under rolling contact fatigueFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 12 2005K. KIDA ABSTRACT Flaking failure caused by surface cracks of silicon nitride ceramic bearings has been investigated from the viewpoint of the ring crack model. However, the relation between surface and subsurface cracks under rolling contact fatigue is not fully understood. In this investigation subsurface cracks branching from an initial surface crack were observed in detail, and the process of flaking failure was investigated. The specimens were observed prior to the separation of the surface layers and it was found that the initial surface cracks grew vertically to the surfaces and did not curve as predicted by the ring crack model. Subsurface cracks branched from the single surface cracks and grew in a direction parallel to the surface. They grew in both the same and the opposite directions to the ball movement, with small upward and downward branches. These subsurface cracks grew prior to the semi-circular surface cracks. From these observations it was concluded that the flaking failures are not caused directly by the surface cracks, but by the subsurface cracks that branch from them. [source] Surface crack growth of silicon nitride bearings under rolling contact fatigueFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 8 2004K. KIDA ABSTRACT Surface crack growth of silicone nitride ceramic bearings under rolling contact fatigue has been investigated from the viewpoints of contact stresses (ring crack model) and fluid pressure (wedge effect model). The mechanisms of these two models have been investigated independently; however, it was impossible to separate the effects of contact stresses and fluid pressure on surface crack growth. In this paper the effects of contact stresses (ring crack model) on surface crack growth are investigated. In the ring crack model the crack growth is caused by contact stresses around the circumference of the contact circle. The growth of surface cracks located inside and outside the contact track was observed in order to obtain data from which we could reexamine the ring crack model. The outside cracks under rolling contact fatigue were propagated by contact stresses alone and also the inside cracks grew as slowly as the outside cracks. We concluded that the cracks are propagated by the single effect of contact stresses. Preliminary observations of surface crack growth showed that the cracks were unaffected by wear and residual stresses. [source] The continuous crack flexibility model for crack identificationFATIGUE & FRACTURE OF ENGINEERING MATERIALS AND STRUCTURES, Issue 10 2001T. G. Chondros The presence of a crack in a structural member introduces a local flexibility that affects its dynamic response. Moreover, the crack will open and close in time depending on the loading conditions and vibration amplitude. The changes in dynamic characteristics can be measured and lead to an identification of the structural changes which eventually might lead to the detection of a structural flaw. The results of various independent evaluations of changes in the natural frequency of vibrations of cracked structural elements are reported. A crack model of a continuous flexibility, found with fracture mechanics methods using the displacement field in the vicinity of the crack developed recently is used here. The analytical results for the cracked elements behaviour based on the continuous crack flexibility vibration theory were correlated with numerical solutions, the lumped-crack beam vibration analysis and experimental results obtained on aluminium and steel beams with open cracks. [source] A rate-dependent cohesive crack model based on anisotropic damage coupled to plasticityINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2006Per-Ola Svahn Abstract In quasi-brittle material the complex process of decohesion between particles in microcracks and localization of the displacement field into macrocracks is limited to a narrow fracture zone, and it is often modelled with cohesive crack models. Since the anisotropic nature of the decohesion process in separation and sliding is essential, it is particularly focused in this paper. Moreover, for cyclic and dynamic loading the unloading, load reversal (including crack closure) and rate dependency are essential features that are included in a new model. The modelling of degradation is based on a ,localized' version of anisotropic continuum damage coupled to inelasticity. The concept of strain energy equivalence between the states in the effective and nominal settings is adopted in order to define the free energy of the interface. The proposed fracture criterion is of the Mohr type, with a smooth transition of the failure and kinematics (slip and dilatation) characteristics between tension and shear. The chosen potential, of the Lemaitre-type, for evolution of the dissipative processes is additively decomposed into plastic and damage parts, and non-associative constitutive equations are obtained. The constitutive equations are integrated by applying the backward Euler rule and by using Newton iteration. The proposed model is assessed analytically and numerically and a typical calibration procedure for concrete is proposed. Copyright © 2006 John Wiley & Sons, Ltd. [source] A simplified analysis of interface failure under compressive normal stress and monotonic or cyclic shear loadingINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2005Zenon Mróz Abstract Interface damage and delamination is usually accompanied by frictional slip at contacting interfaces under compressive normal stress. The present work is concerned with an analysis of progressive interface failure using the cohesive crack model with the critical stress softening and frictional traction present at the contact. Both monotonic and cyclic loadings are considered for anti-plane shear of an elastic plate bonded to a rigid substrate by means of cohesive interface. An analytical solution can be obtained by neglecting the effect of minor shear stress component. The analysis of progressive delamination process revealed three solution types, namely: short, medium and long plate solutions. The long plate solution was obtained under an assumption of quasistatic progressive growth of the delamination zone. In view of snap back response, the quasistatic deformation process cannot be executed by either traction or displacement control. The states of frictional slip accompanied by shake down or incremental failure are distinguished in the case of cyclic loading, related to load amplitude and structural dimensions. The analysis provides a reference solution for numerical treatment of more complex cases. Copyright © 2005 John Wiley & Sons, Ltd. [source] Analytical simulation of the dynamic compressive strength of a granite using the sliding crack modelINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2001H. B. Li Abstract A sliding crack model is employed to simulate rock strength under dynamic compression. It is assumed that the growth and nucleation of a sliding crack array presented results in the shear fault failure and dominate the mechanical properties of rock material. The pseudo-tractions method is used to calculate the stress intensity factor of the sliding crack array under compression. With the utilization of a dynamic crack growth criterion, the growth of the sliding crack array is studied and the simulated strengths of a granite under dynamic compression are correspondingly obtained. It is concluded that the simulated rock strengths increase with increasing strain rates at different confining pressures, and the rising rates have a trend to decrease with increasing confining pressures. It is also indicated that the simulated rock strengths increase with increment of confining pressure at different strain rates, and the rising rates are almost identical at different strain rates. The simulation results are validated by the experimental data for the granite. Copyright © 2001 John Wiley & Sons, Ltd. [source] A new triangular layered plate element for the non-linear analysis of reinforced concrete slabsINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 7 2006Y. X. Zhang Abstract A new 3-node, 18-DOF triangular layered plate element is developed in this paper for the geometric and material non-linear analysis of isotropic plates and reinforced concrete slabs under service loads. The proposed model is a combination of Allman's 3-node, 9-DOF triangular membrane element with drilling degrees of freedom and the refined non-conforming 3-node, 9-DOF triangular plate-bending element RT9 in order to account for the coupling effects between membrane and bending actions. The element is modelled as a layered system of concrete and equivalent smeared steel reinforcement layers, and perfect bond is assumed between the concrete layers and the smeared steel layers. The maximum normal stress criterion is employed to detect cracking of the concrete, and a smeared fixed crack model is assumed. Both geometric non-linearity with large displacements but moderate rotations and material non-linearity, which incorporates tension, compression, concrete cracking and tension stiffening, are included in the model. An updated Lagrangian approach is employed as a solution strategy for the non-linear finite element analysis and a numerical example of reinforced concrete slab is given to demonstrate the efficacy of this robust element. Copyright © 2005 John Wiley & Sons, Ltd. [source] |