Crystallization Kinetics (crystallization + kinetics)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Crystallization Kinetics

  • isothermal crystallization kinetics
  • nonisothermal crystallization kinetics


  • Selected Abstracts


    Crystallization Kinetics of the (Zr58Ni13.6Cu18Al10.4)Nb1 Bulk Metallic Glass,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2006
    D. Qiao
    The differential thermal analysis (DTA) curve of the (Zr58Ni13.6Cu18Al10.4)Nb1 bulk metallic glass (BMG) shows that there are two exothermic crystallization peaks and two endothermic melting peaks. The BMG has been completely crystallized in the first crystallization peak. X-ray shows that the quenched BMG only includes the glass single phase. The BMG heated to 823 K (between the first and the second crystallization peak) has the precipitation of the cubic NiZr2. The BMG heated to 1003 K (after the second crystallization peak) has the cubic NiZr2, bct NiZr2, and bct CuZr2. HRTEM shows that there are some nano-crystalline phases for the quenched BMG. [source]


    Crystallization Kinetics and X-ray Diffraction of Crystals Formed in Amorphous Lactose, Trehalose, and Lactose/Trehalose Mixtures

    JOURNAL OF FOOD SCIENCE, Issue 5 2005
    Song Miao
    ABSTRACT: Effects of storage time and relative humidity on crystallization kinetics and crystal forms produced from freeze-dried amorphous lactose, trehalose, and a lactose/trehalose mixture were compared. Samples were exposed to 4 different relative water vapor pressure (RVP) (44.1%, 54.5%, 65.6%, 76.1%) environments at room temperature. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage humidity. Lactose crystallized as ,-lactose monohydrate, ,-anhydrous, and anhydrous forms of ,- and ,-lactose in molar ratios of 5:3 and 4:1 in lactose and lactose/trehalose systems. Trehalose seemed to crystallize as a mixture of trehalose dihydrate and anhydrate in trehalose and lactose/trehalose systems. The crystal forms in a mixture of lactose and trehalose did not seem to be affected by the component sugars, but crystallization of the component sugars was delayed. Time-dependent crystallization of lactose and trehalose in the lactose-trehalose mixture could be modeled using the Avrami equation. The results indicated that crystallization data are important in modeling of crystallization phenomena and predicting stability of lactose and trehalose-containing food and pharmaceutical materials. Keywords: crystallization, lactose, trehalose, crystal form, X-ray diffraction [source]


    Crystallization Kinetics of Amorphous Lactose as a Function of Moisture Content Using Isothermal Differential Scanning Calorimetry

    JOURNAL OF FOOD SCIENCE, Issue 2 2000
    C. J. Kedward
    ABSTRACT: Isothermal differential scanning calorimetry (DSC) was used to study the crystallization kinetics of amorphous lactose at 3 moisture contents. Each sample was heated to several temperatures between Tg and Tm. After subtraction of an induction time, the Avrami equation was used to model the data and a Lauritzen-Hoffman like expression used to fit the crystallization rates between Tg and Tm. The highest Tm/Tg ratio and crystallization rate were observed for the sample containing the most moisture. Conversely the lowest Tm/Tg ratio and crystallization rate were observed for the sample containing the least moisture. Evidence for multiple transitions was seen. The Avrami equation may not be the best way to model such data. [source]


    Crystallization Kinetics and Electrical Relaxation of BaO,0.5Li2O,4.5B2O3 Glasses

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2009
    Rahul Vaish
    Transparent glasses in the composition BaO,0.5Li2O,4.5B2O3 (BLBO) were fabricated via the conventional melt-quenching technique. X-ray powder diffraction combined with differential scanning calorimetric (DSC) studies carried out on the as-quenched samples confirmed their amorphous and glassy nature, respectively. The crystallization behavior of these glasses has been studied by isothermal and nonisothermal methods using DSC. Crystallization kinetic parameters were evaluated from the Johnson,Mehl,Avrami equation. The value of the Avrami exponent (n) was found to be 3.6±0.1, suggesting that the process involves three-dimensional bulk crystallization. The average value of activation energy associated with the crystallization of BLBO glasses was 317±10 kJ/mol. Transparent glass,ceramics were fabricated by controlled heat-treatment of the as-quenched glasses at 845 K/40 min. The dielectric constants for BLBO glasses and glass,ceramics in the 100 Hz,10 MHz frequency range were measured as a function of the temperature (300,925 K). The electrical relaxation and dc conductivity characteristics were rationalized using electric modulus formalism. The imaginary part of the electric modulus spectra was modeled using an approximate solution of the Kohlrausch,Williams,Watts relation. The temperature-dependent behavior of stretched exponent (,) was discussed for the as-quenched and heat-treated BLBO glasses. [source]


    Isothermal Crystallization Kinetics of Poly(, -caprolactone) with Tetramethyl Polycarbonate and Poly(styrene- co -acrylonitrile) Blends Using Broadband Dielectric Spectroscopy

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006
    Samy A. Madbouly
    Abstract Summary: Phase behavior and isothermal crystallization kinetics of poly(, -caprolactone) (PCL) blends with tetramethyl polycarbonate (TMPC) and poly(styrene- co -acrylonitrile) with 27.5 wt.-% acrylonitrile content have been investigated using broadband dielectric spectroscopy and differential scanning calorimeter. An LCST-type phase diagram has been observed for PCL/SAN blend while all the different blend compositions of PCL/TMPC were optically clear without any phase separation structure even at high temperatures up to 300,°C. The composition dependence of Tgs for both blends has been well described by the Gordon-Taylor equation. The phase diagram of PCL/SAN was theoretically calculated using the Flory-Huggins equation considering that the interaction parameter is temperature and composition dependent. The equilibrium melting point of PCL depressed in the blend and the magnitude of the depression was found to be composition dependent. The interaction parameters of PCL with TMPC and SAN could not be calculated from the melting point depression based on Nishi-Wang approach. The isothermal crystallization kinetics of PCL and in different blends was also investigated as a function of crystallization temperature using broadband dielectric spectroscopy. For pure PCL the rate of crystallization was found to be crystallization temperature (Tc) dependent, i.e., the higher the Tc, the lower the crystallization rate. The crystallization kinetics of PCL/TMPC blend was much slower than that of PCL/SAN at a constant crystallization temperature. This behavior was attributed to the fact that PCL is highly interacted with TMPC than SAN and consequently the stronger the interaction the higher the depression in the crystallization kinetics. It was also attributed to the different values of Tg of TMPC (191,°C) and SAN (100,°C); therefore, the tendency for crystallization decreases upon increasing the Tg of the amorphous component in the blend. The analysis of the isothermal crystallization kinetics was carried out using the theoretical approach of Avrami. The value of Avrami exponent was almost constant in the pure state and in the blends indicating that blending simply retarded the crystallization rate without affecting the crystallization mechanism. Dielectric constant, ,,, of pure PCL, blends of PCL/TMPC,=,80/20 and PCL/SAN,=,80/20 as a function of crystallization time at 47,°C and 1 kHz. [source]


    Barium Sulfate Crystallization Kinetics in the Used Quenching Salts Treatment Process

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 5 2004
    A. Matynia
    Abstract The research results and kinetic studies on the barium ions precipitation process by means of crystalline ammonium sulfate addition are presented. The influence of: barium, sodium, potassium and calcium chlorides concentration in the feeding solution and also the process temperature on barium sulfate mass crystallization kinetics are investigated. Experiments were carried out in the MSMPR crystallizer with internal circulation of suspension. The barium sulfate nucleation and crystal growth rates were estimated from crystal size distribution taking into account a size dependent growth (SDG). Research results may be utilized in the used quenching salts processing technology. [source]


    Crystallization kinetics of ZnS precipitation; an experimental study using the mixed-suspension-mixed-product-removal (MSMPR) method

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 8 2004
    Mousa Al-Tarazi
    Abstract The precipitation kinetics of zinc sulfide were studied using a lab scale mixed-suspension-mixed-product-removal (MSMPR) precipitation reactor. The vessel was operated at different feed concentrations, molar ratios, stirrer speeds, pH-values, feed injection positions and residence times. Primary nucleation and volume average crystal growth rates as well as agglomeration kernel were determined. Relationships were found between the rates of the different crystallization steps on the one hand and supersaturation, stirrer speeds, pH-values, Zn2+ to S2- ratio, feed positions on the other. These show that larger crystals are obtained at high supersaturation, moderate stirrer speeds, small residence times, a pH-value of around 5 and high Zn2+ to S2- ratios. One should realize though that the applied MSMPR method is not the most optimal technique for examining fast precipitation reactions. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Melt Structure and its Transformation by Sequential Crystallization of the Two Blocks within Poly(L -lactide)- block -Poly(, -caprolactone) Double Crystalline Diblock Copolymers

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006
    I. W. Hamley
    Abstract Summary: Sequential crystallization of poly(L -lactide) (PLLA) followed by poly(, -caprolactone) (PCL) in double crystalline PLLA- b -PCL diblock copolymers is studied by differential scanning calorimetry (DSC), polarized optical microscopy (POM), wide-angle X-ray scattering (WAXS) and small-angle X-ray scattering (SAXS). Three samples with different compositions are studied. The sample with the shortest PLLA block (32 wt.-% PLLA) crystallizes from a homogeneous melt, the other two (with 44 and 60% PLLA) from microphase separated structures. The microphase structure of the melt is changed as PLLA crystallizes at 122,°C (a temperature at which the PCL block is molten) forming spherulites regardless of composition, even with 32% PLLA. SAXS indicates that a lamellar structure with a different periodicity than that obtained in the melt forms (for melt segregated samples). Where PCL is the majority block, PCL crystallization at 42,°C following PLLA crystallization leads to rearrangement of the lamellar structure, as observed by SAXS, possibly due to local melting at the interphases between domains. POM results showed that PCL crystallizes within previously formed PLLA spherulites. WAXS data indicate that the PLLA unit cell is modified by crystallization of PCL, at least for the two majority PCL samples. The PCL minority sample did not crystallize at 42,°C (well below the PCL homopolymer crystallization temperature), pointing to the influence of pre-crystallization of PLLA on PCL crystallization, although it did crystallize at lower temperature. Crystallization kinetics were examined by DSC and WAXS, with good agreement in general. The crystallization rate of PLLA decreased with increase in PCL content in the copolymers. The crystallization rate of PCL decreased with increasing PLLA content. The Avrami exponents were in general depressed for both components in the block copolymers compared to the parent homopolymers. Polarized optical micrographs during isothermal crystallization of (a) homo-PLLA, (b) homo-PCL, (c) and (d) block copolymer after 30 min at 122,°C and after 15 min at 42,°C. [source]


    Crystallization kinetics of poly(trimethylene terephthalate)

    POLYMER ENGINEERING & SCIENCE, Issue 2 2001
    Hoe H. Chuah
    The bulk isothermal crystallization kinetics of poly(trimethylene terephthalate) (PTT) was studied using a differential scanning calorimeter. Avrami's theory was used to analyze the data. Based on crystallinity growth rate, Avrami rate constant, K, and crystallization half-time, PTT's crystallization rate is between those of poly(butylene terephthalate) (PBT) and poly(ethylene terephthalate) (PET) when compared at the same degree of undercooling. PBT has the highest crystallization rate with K in the order of 10,2 to 10,1 min,n. It is about an order of magnitude faster than PTT at 10,3 to 10,2 min,n, which in turn is an order of magnitude faster than PET with K of 10,4 to 10,2 min,n. Contrary to previous reports (PTT was not included in the study) that aromatic polyesters with odd numbers of methylene units were more difficult to crystallize than the even-numbered polyesters, PTT did not fit in the prediction and did not follow the odd-even effect. [source]


    Kinetic studies on the influence of temperature and growth rate history on crystal growth

    CRYSTAL RESEARCH AND TECHNOLOGY, Issue 12 2008
    P. M. Martins
    Abstract Crystallization experiments of sucrose were performed in a batch crystallizer to study the effect of temperature and growth rate history on the crystal growth kinetics. In one of the growth methods adopted, the isothermal volumetric growth rate (RV) is determined as a function of supersaturation (S) at 35, 40 and 45 ºC. In the other, crystals are allowed to grow at constant supersaturation by automatically controlling the solution temperature as the solute concentration decreased. Using the latter method RV is calculated as the solution is cooled. The obtained results are interpreted using empirical, engineering and fundamental perspectives of crystal growth. Firstly, the overall activation energy (EA) is determined from the empirical growth constants obtained in the isothermal method. The concept of falsified kinetics, widely used in chemical reaction engineering, is then extended to the crystal growth of sucrose in order to estimate the true activation energy (ET) from the diffusion-affected constant, EA. The differences found in the isothermal and constant supersaturation methods are explained from the viewpoint of the spiral nucleation mechanism, taking into account different crystal surface properties caused by the growth rate history in each method. Finally, the crystal growth curve obtained in the batch crystallizer at 40 ºC is compared with the one obtained in a fluidized bed crystallizer at the same temperature. Apparently divergent results are explained by the effects of crystal size, hydrodynamic conditions and growth rate history on the crystallization kinetics of sucrose. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Influence of shear flow on polymorphic behavior and microstructural development during palm oil crystallization

    EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 3 2009
    Veerle De Graef
    Abstract The influence of shear on the crystallization of palm oil was studied at four different crystallization temperatures (18, 20, 22 and 25,°C). Time-resolved X-ray analyses were carried out to study the effect of continuous shear on the crystallization kinetics of the fat. Rheological measurements were used to assess the effect of a shear step on crystallization, and finally polarized light microscopy was used to follow changes in microstructure due to the applied initial shear step. It was shown that shear enhanced the primary crystallization, even when low shear rates were applied for a short period. Furthermore, a shear step prior to crystallization without shear has a marked influence on the microstructural development. [source]


    Time,Temperature,Transformation (TTT) Diagrams for Crystallization of Metal Oxide Thin Films

    ADVANCED FUNCTIONAL MATERIALS, Issue 17 2010
    Jennifer L. M. Rupp
    Abstract Time,temperature,transformation (TTT) diagrams are proposed for the crystallization of amorphous metal oxide thin films and their specific characteristics are discussed in comparison to glass-based materials, such as glass-ceramics and metallic glasses. The films crystallize from amorphous to full crystallinity in the solid state. As an example the crystallization kinetics for a single-phase metal oxide, ceria, and its gadolinia solid solutions are reported made by the precipitation thin-film method spray pyrolysis. The crystallization of an amorphous metal oxide thin film generally follows the Lijschitz,Sletow,Wagner (LSW) Ostwald ripening theory: Below the percolation threshold of 20 vol% single grains crystallize in the amorphous phase and low crystallization rates are measured. In this state no impact of solute on crystallization is measurable. Once the grains form primary clusters above the threshold the solute slows down crystallization (and grain growth) thus shifting the TTT curves of the doped ceria films to longer times and higher temperatures in comparison to undoped ceria. Current views on crystallization of metal oxide thin films, the impact of solute dragging, and primary TTT diagrams are discussed. Finally, examples on how to use these TTT diagrams for better thermokinetic engineering of metal oxide thin films for MEMS are given, for example, for micro-Solid Oxide Fuel Cells and resistive sensors. In these examples the electrical properties depend on the degree of crystallinity and, thereby, on the TTT conditions. [source]


    The continuous cooling transformation (CCT) as a flexible tool to investigate polymer crystallization under processing conditions

    ADVANCES IN POLYMER TECHNOLOGY, Issue 2 2009
    V. Brucato
    Abstract An experimental route for investigating polymer crystallization over a wide range of cooling rates (from 0.01 to 1000°C/s) and pressures (from 0.1 to 40 MPa) is illustrated, using a method that recalls the approach adopted in metallurgy for studying structure development in metals. Two types of experimental setup were used, namely an apparatus for fast cooling of thin films (100,200 ,m thick) at various cooling rates under atmospheric pressure and a device (based on a on-purpose modified injection molding machine) for quenching massive samples (about 1,2 cm3) under hydrostatic pressure fields. In both cases, ex situ characterization experiments were carried out to probe the resulting structure, using techniques such as density measurements and wide-angle x-ray diffraction (WAXD) patterns. The cooling mechanism and temperature distribution across the sample thickness were analyzed. Results show that the final structure is determined only by the imposed thermal history and pressure. Experimental results for isotactic polypropylene (iPP), poly(ethylene terephthalate) (PET), polyamide 6 (PA6), and syndiotactic polystyrene (sPS) are reported, showing the reliability of this experimental approach to assess not only quantitative information but also a qualitative description of the crystallization behavior of different classes of semicrystalline polymers. The present study gives an opportunity to evaluate how the combined effect of the cooling rate and pressure influences the crystallization kinetics for various classes of polymer of commercial interest. An increase in the cooling rate translates into a decrease in crystallinity and density, which both experience a sudden drop around the specific "crystallizability" (or "critical cooling rate") of the material examined. The exception is sPS where competition among the various crystalline modifications determines a minimum in the plot of density vs. cooling rate. As for the effect of pressure, iPP exhibits a "negative dependence" of crystallization kinetics upon pressure, with a decrease of density and degree of crystallinity with increasing pressure, owing to kinetic constraints. PA6 and PET, on the other hand, due to thermodynamic factors resulting in an increase in Tm with pressure, exhibits a "positive dependence" of crystallization kinetics upon pressure. Finally, recent original results concerning sPS have shown that the minimum in the density vs. cooling rate curve shifts toward larger cooling rates upon increasing pressure. © 2009 Wiley Periodicals, Inc. Adv Polym Techn 28:86,119, 2009; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/adv.20151 [source]


    Nonisothermal and isothermal crystallization kinetics of nylon-12

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
    Neil L. A. McFerran
    Abstract The isothermal and nonisothermal crystallization behavior of Nylon 12 was investigated using differential scanning calorimetry (DSC). An Avrami analysis was used to study the isothermal crystallization kinetics of Nylon 12, the Avrami exponent (n) determined and its relevance to crystal growth discussed and an activation energy for the process evaluated using an Arrhenius type expression. The Lauritzen and Hoffman analysis was used to examine the spherulitic growth process of the primary crystallization stage of Nylon 12. The surface-free energy and work of chain folding were calculated using a procedure reported by Hoffmann and the work of chain folding per molecular fold (,) and chain stiffness of Nylon 12 (q) was calculated and compared to values reported for Nylons 6,6 and 11. The Jeziorny modification of the Avrami analysis, Cazé and Chuah average Avrami parameter methods and Ozawa equation were used in an attempt to model the nonisothermal crystallization kinetics of Nylon 12. A combined Avrami and Ozawa treatment, described by Liu, was used to more accurately model the nonisothermal crystallization kinetics of Nylon 12. The activation energy for nonisothermal crystallization processes was determined using the Kissinger method for Nylon 12 and compared with values reported previously for Nylon 6,6 and Nylon 11. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Effect of ,-nucleating agents on crystallization and melting behavior of isotactic polypropylene

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
    Wenchang Xiao
    Abstract Two kinds of ,-nucleating agents, named a rare earth complex (WBG) and a N,N,-dicyclohexylterephthalamide (TMB5), were introduced into isotactic polypropylene (iPP), and their effect on crystallization and melting behavior of iPP was comparatively investigated. Wide angle X-ray diffraction measurements revealed that both the two additives were highly effective in inducing , modification. At their respective optimum concentrations of 0.08 wt % for WBG and 0.06 wt % for TMB5, the relative amount of ,-form calculated by Turner-Jones equation both exceeds 92%. However, the isothermal crystallization kinetics investigated by differential scanning calorimetry demonstrated that WBG had more pronounced effect than TMB5 in accelerating the overall crystallization rate. The Lauritzen,Hoffman theory analysis also revealed that WBG was more effective not only in increasing the nucleus number but also in accelerating the growth rate of crystallization. After completing isothermal crystallization process, the subsequent melting behavior examination suggested that the addition of WBG expanded the upper limit temperature of forming , modification, and therefore was more effective in delaying the ,-, transformation than TMB5. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Isothermal crystallization kinetics and melting behaviors of nanocomposites of poly(trimethylene terephthalate) filled with nano-CaCO3

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007
    Mingtao Run
    Abstract The isothermal crystallization and subsequent melting behavior of poly(trimethylene terephthalate) (PTT) composites filled with nano-CaCO3 were investigated at designated temperatures with differential scanning calorimetry. The Avrami equation was used to fit the isothermal crystallization. The Avrami exponents were determined to be 2,3 for the neat PTT and PTT/CaCO3 composites. The particles of nano-CaCO3, acting as nucleating agents in the composites, accelerated the crystallization rate, with the half-time of crystallization decreasing or the growth rate constant (involving both nucleation and growth rate parameters) increasing. The crystallization activation energy calculated from the Arrhenius formula was reduced as the nano-CaCO3 content increased from 0 to 2%, and this suggested that nano-CaCO3 made the molecular chains of PTT easier to crystallize during the isothermal crystallization process. Subsequent melting scans of the isothermally crystallized composites exhibited triple or double melting endotherms: the greater the content was of nano-CaCO3, the lower the temperature was of the melting peak. The degree of crystallization deduced from the melt enthalpy of composites with the proper concentration of nano-CaCO3 was higher than that of pure PTT, but it was lower when the nano-CaCO3 concentration was more than 2%. The transmission electron microscopy pictures suggested that the dispersion state of nano-CaCO3 particles in the polymer matrix was even when its concentration was no more than 2%, whereas some agglomeration occurred when its concentration was 4%. Polarized microscopy pictures showed that much smaller or less perfect crystals formed in the composites because of the interaction between the molecular chains and nano-CaCO3 particles. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 [source]


    Evaluation of the crystallization kinetics and melting of polypropylene and metallocene-prepared polyethylene blends

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
    Mohammad Razavi-Nouri
    Abstract The kinetics of the isothermal crystallization of a polypropylene (PP) random copolymer containing 5 mol % ethylene, a metallocene linear low-density polyethylene (m -LLDPE) with 3.3 mol % hexene-1 as a comonomer, and three blends were studied with differential scanning calorimetry at temperatures sufficiently high to prevent any crystallization of m-LLDPE. The analysis was carried out with the Avrami equation. The overall crystallization rate and the equilibrium melting temperature of the PP copolymer decreased with increasing amounts of m-LLDPE in the blends. The former was attributed to the effect of m-LLDPE in reducing the number of primary nuclei, and the latter was attributed to a lowering of the fold surface energy due to the limited partial miscibility of the blend components. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 634,640, 2007 [source]


    Crystallization Kinetics and X-ray Diffraction of Crystals Formed in Amorphous Lactose, Trehalose, and Lactose/Trehalose Mixtures

    JOURNAL OF FOOD SCIENCE, Issue 5 2005
    Song Miao
    ABSTRACT: Effects of storage time and relative humidity on crystallization kinetics and crystal forms produced from freeze-dried amorphous lactose, trehalose, and a lactose/trehalose mixture were compared. Samples were exposed to 4 different relative water vapor pressure (RVP) (44.1%, 54.5%, 65.6%, 76.1%) environments at room temperature. Crystallization was observed from time-dependent loss of sorbed water and increasing intensities of peaks in X-ray diffraction patterns. The rate of crystallization increased with increasing storage humidity. Lactose crystallized as ,-lactose monohydrate, ,-anhydrous, and anhydrous forms of ,- and ,-lactose in molar ratios of 5:3 and 4:1 in lactose and lactose/trehalose systems. Trehalose seemed to crystallize as a mixture of trehalose dihydrate and anhydrate in trehalose and lactose/trehalose systems. The crystal forms in a mixture of lactose and trehalose did not seem to be affected by the component sugars, but crystallization of the component sugars was delayed. Time-dependent crystallization of lactose and trehalose in the lactose-trehalose mixture could be modeled using the Avrami equation. The results indicated that crystallization data are important in modeling of crystallization phenomena and predicting stability of lactose and trehalose-containing food and pharmaceutical materials. Keywords: crystallization, lactose, trehalose, crystal form, X-ray diffraction [source]


    Sorption Isotherm and Calorimetric Behavior of Amorphous/Crystalline Raffinose-Water Systems

    JOURNAL OF FOOD SCIENCE, Issue 4 2000
    H.A. Iglesias
    ABSTRACT: The water adsorption and desorption isotherms at 27 °C of initially amorphous raffinose over a range of relative humidity of 11% to 97% have been determined. Upon adsorption, the isotherm exhibited a "quasi" plateau, and the moisture content at this plateau was found to be very close to the amount required to form the crystalline raffinose pentahydrate (R.5 H2O). Crystallization of raffinose (R.5 H2O) during water adsorption at 52% and 58% RH was indicated by differential scanning calorimetry (DSC); both thermograms showed an endothermal peak of melting corresponding to R.5H2O. The results of the crystallization kinetics at 52% and 58% RH indicated that the time to assess the stable physical state in a sugar system for a given external condition has to be properly defined and depends on the (T-Tg) value. [source]


    Crystallization Kinetics of Amorphous Lactose as a Function of Moisture Content Using Isothermal Differential Scanning Calorimetry

    JOURNAL OF FOOD SCIENCE, Issue 2 2000
    C. J. Kedward
    ABSTRACT: Isothermal differential scanning calorimetry (DSC) was used to study the crystallization kinetics of amorphous lactose at 3 moisture contents. Each sample was heated to several temperatures between Tg and Tm. After subtraction of an induction time, the Avrami equation was used to model the data and a Lauritzen-Hoffman like expression used to fit the crystallization rates between Tg and Tm. The highest Tm/Tg ratio and crystallization rate were observed for the sample containing the most moisture. Conversely the lowest Tm/Tg ratio and crystallization rate were observed for the sample containing the least moisture. Evidence for multiple transitions was seen. The Avrami equation may not be the best way to model such data. [source]


    Effects of matrix grain size on the kinetics of intergranular diffusion

    JOURNAL OF METAMORPHIC GEOLOGY, Issue 8 2004
    W. D. Carlson
    Abstract A linear relationship exists between the mean volume of garnet porphyroblasts and the squared inverse of mean matrix grain diameter for six samples of garnetiferous mica quartzite with identical thermal histories and similar mineralogy and modes. This relationship accords with theoretical predictions of the dependence of intergranular diffusive fluxes on the volume fraction of grain edges that function as diffusional pathways during porphyroblast growth. The impact of matrix grain size is large: compared to a rock with a 1-mm matrix, a rock with a 10- ,m matrix would experience rates of diffusion-controlled porphyroblast growth that are 10 000 times faster, and characteristic length scales for chemical equilibration that are 100 times larger. Precursor grain sizes may therefore exert a major influence on crystallization kinetics. If matrix coarsening occurs during prograde reaction, a decrease in the volume fraction of diffusional pathways will tend to counteract the exponential thermal increase in diffusive fluxes. The impact of such matrix grain growth, although difficult to assess without firm knowledge of coarsening rates in polymineralic aggregates, might be significant for matrices finer than c. 100 ,m at temperatures above c. 500,600 °C, but is likely negligible for coarser grain sizes and lower temperatures. [source]


    Prediction of onset of crystallization in amorphous pharmaceutical systems: Phenobarbital, nifedipine/PVP, and phenobarbital/PVP

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2010
    Vincent Caron
    Abstract The aim of this work is to determine if a stability testing protocol based on the correlations between crystallization onset and relaxation time above the glass transition temperature (Tg) can be used to predict the crystallization onsets in amorphous pharmaceutical systems well below their Tg. This procedure assumes that the coupling between crystallization onset and molecular mobility is the same above and below Tg. The stability testing protocol has been applied to phenobarbital, phenobarbital/polyvinylpyrrolidone (PVP) (95/5, w/w), and nifedipine/PVP (95/5, w/w). Crystallization onsets have been detected by polarized light microscopy examination of amorphous films; molecular mobility has been determined by dielectric relaxation spectroscopy above Tg and by both isothermal calorimetry and modulated differential scanning calorimetry below Tg. We find that small amounts of PVP significantly retard re-crystallization. This dramatic effect of PVP is not related to mobility, so this approach applies, at best, to extrapolation of high temperature data on a given formulation to low temperatures. Variation in molecular mobility at these concentrations of PVP is not the dominant factor in determining variation in propensity for re-crystallization from glassy systems; we suggest surface interactions between PVP and nuclei and/or small crystals slowing growth control variation in crystallization kinetics between formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3887,3900, 2010 [source]


    Time-Resolved Synchrotron SAXS Observations on Sheared Syndiotactic Poly(propylene) Crystallization Process

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 16 2008
    Huiying Wen
    Abstract The in situ crystallization kinetics of syndiotactic poly(propylene) (sPP) has been investigated by synchrotron small-angle X-ray scattering (SAXS). The structure evolutions during the isothermal crystallization of sPP with different shear rates have been observed. The results show that shear accelerates the process of crystallization kinetics. Even under low shear rate, the lamellae can be distinctly oriented. In contrast, the lamellar parameters such as the long period, lamellar thickness, and the scattering invariant Q can change obviously only under high shear rate. A mesomorphic structure proposed by Strobl is adopted to elucidate the differences of shear effects with low and high shear rates. Based on all the analysis we are convinced that a relatively stable mesomorphic structure forms before shear is composed and the shear effects on the mesophase will be retained to a certain extent until crystallization is finished. [source]


    Isothermal Crystallization Kinetics of Poly(, -caprolactone) with Tetramethyl Polycarbonate and Poly(styrene- co -acrylonitrile) Blends Using Broadband Dielectric Spectroscopy

    MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006
    Samy A. Madbouly
    Abstract Summary: Phase behavior and isothermal crystallization kinetics of poly(, -caprolactone) (PCL) blends with tetramethyl polycarbonate (TMPC) and poly(styrene- co -acrylonitrile) with 27.5 wt.-% acrylonitrile content have been investigated using broadband dielectric spectroscopy and differential scanning calorimeter. An LCST-type phase diagram has been observed for PCL/SAN blend while all the different blend compositions of PCL/TMPC were optically clear without any phase separation structure even at high temperatures up to 300,°C. The composition dependence of Tgs for both blends has been well described by the Gordon-Taylor equation. The phase diagram of PCL/SAN was theoretically calculated using the Flory-Huggins equation considering that the interaction parameter is temperature and composition dependent. The equilibrium melting point of PCL depressed in the blend and the magnitude of the depression was found to be composition dependent. The interaction parameters of PCL with TMPC and SAN could not be calculated from the melting point depression based on Nishi-Wang approach. The isothermal crystallization kinetics of PCL and in different blends was also investigated as a function of crystallization temperature using broadband dielectric spectroscopy. For pure PCL the rate of crystallization was found to be crystallization temperature (Tc) dependent, i.e., the higher the Tc, the lower the crystallization rate. The crystallization kinetics of PCL/TMPC blend was much slower than that of PCL/SAN at a constant crystallization temperature. This behavior was attributed to the fact that PCL is highly interacted with TMPC than SAN and consequently the stronger the interaction the higher the depression in the crystallization kinetics. It was also attributed to the different values of Tg of TMPC (191,°C) and SAN (100,°C); therefore, the tendency for crystallization decreases upon increasing the Tg of the amorphous component in the blend. The analysis of the isothermal crystallization kinetics was carried out using the theoretical approach of Avrami. The value of Avrami exponent was almost constant in the pure state and in the blends indicating that blending simply retarded the crystallization rate without affecting the crystallization mechanism. Dielectric constant, ,,, of pure PCL, blends of PCL/TMPC,=,80/20 and PCL/SAN,=,80/20 as a function of crystallization time at 47,°C and 1 kHz. [source]


    Antifreeze Properties of Polyglycidol Block Copolymers

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 23 2007
    Eti Baruch
    Abstract In this paper, we describe a new biomimetic approach to the synthesis of block copolymers with antifreeze properties. Our approach focuses on the design of block copolymers that mimic the structure and functionality of antifreeze proteins. Hyperbranched copolymers containing poly(ethylene oxide)-polyethyleneimine blocks and polyglycidol side chains were synthesized and their antifreeze properties were studied. It is shown that these block copolymers can lower the freezing point of water up to 0.8,°C at a relatively low concentration (1 mg,·,mL,1). From DSC measurements it is proven that polyglycidol block copolymers slow down the crystallization kinetics of ice and lead to changes in the ice crystal morphology, as observed by cryo-optical microscopy. [source]


    Mechanistic Investigation into the Unique Orientation Textures of Poly(vinylidene fluoride) in Blends with Nylon 11

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 10 2003
    Yongjin Li
    Abstract Self-seeded crystallization experiments were carried out to detect the mechanism of the unique orientation behavior of poly(vinylidene fluoride) (PVDF) in oriented PVDF/nylon 11 blends. It was found that primary nuclei have no effects on the final orientation textures adopted by PVDF. The results show that the PVDF crystal orientation in the oriented blends is determined in the early stage of crystal growth, thus a trans crystallization mechanism is preferred. Isothermal crystallization kinetics for the self-seeded and non-self-seeded crystallization at 145,°C. [source]


    Studies of Adjacent Re-Entry Folds of Chains of Syndiotactic l,2-Poly(1,3-butadiene) by Molecular Mechanics Calculations

    MACROMOLECULAR THEORY AND SIMULATIONS, Issue 2 2007
    Roberto Napolitano
    Abstract The mode of packing and the adjacent re-entry folds of chains of syndiotactic 1,2-poly(1,3-butadiene) have been studied by molecular mechanics calculations with the use of various sets of potential functions. The results of the packing analysis indicate that the crystal grows preferentially along the [100] and [110] directions. Models of fold have been built up on an infinite ab surface completely covered by adjacent re-entry folds in the (100) and (110) planes. The results of energy minimizations show that several almost isoenergetic folds, constituted by four monomeric units, can be realized in the (100) planes, while the fold in the (110) planes has higher energy. The calculated value of the work of fold is in satisfactory agreement with that derived by crystallization kinetics reported in literature. [source]


    Crystallization behavior of Sb70Te30 and Ag3In5Sb60Te32 chalcogenide materials for optical media applications

    PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 2 2008
    M. L. Lee
    Abstract Addition of In and Ag into eutectic Sb70Te30 fast-growth material was studied. We explored the optical transitions and crystallization kinetics of Sb70Te30 and Ag3In5Sb60Te32 recording films. The results showed that Ag3In5Sb60Te32 has a higher crystallization temperature but a similar melting point compared to Sb70Te30. In both the crystalline and amorphous states, addition of Ag and In increased the refractive index and decreased the extinction coefficient of Sb70Te30. Ag3In5Sb60Te32 has better thermal stability and a lower crystallization speed than Sb70Te30 film. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Phase structure and crystallization of the bulk glassy FeCoZrWB alloys

    PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 5 2010
    Katarzyna Pawlik
    Abstract In the present work, the high-energy X-ray diffraction (XRD) measurements performed using monochromatic synchrotron radiation of 112 keV (,=0.110696 Å), were utilized to compare a phase constitution of melt-spun ribbon and suction-cast rods of Fe61Co10+xZr5W4,xB20 alloys (where x = 0, 2, 3 at.%). For bulk amorphous samples of the investigated alloys DSC studies allowed to determine the activation energies of crystal growth and differences in crystallization kinetics at constant heating rates. (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


    Nonisothermal melt crystallization kinetics of poly(ethylene terephthalate)/Barite nanocomposites

    POLYMER COMPOSITES, Issue 9 2010
    Chunhua Ge
    Poly(ethylene terephthalate) (PET)/Barite nanocomposites were prepared by direct melt compounding. The nonisothermal melt crystallization kinetics of pure PET and PET/Barite nanocomposites, containing unmodified Barite and surface-modified Barite (SABarite), was investigated by differential scanning calorimetry (DSC) under different cooling rates. With the addition of barite nanoparticles, the crystallization peak became wider and shifted to higher temperature and the crystallization rate increased. Several analysis methods were used to describe the nonisothermal crystallization behavior of pure PET and its nanocomposites. The Jeziorny modification of the Avrami analysis was only valid for describing the early stage of crystallization but was not able to describe the later stage of PET crystallization. Also, the Ozawa method failed to describe the nonisothermal crystallization behavior of PET. A combined Avrami and Ozawa equation, developed by Liu, was used to more accurately model the nonisothermal crystallization kinetics of PET. The crystallization activation energies calculated by Kissinger, Takhor, and Augis-Bennett models were comparable. The results reveal that the different interfacial interactions between matrix and nanoparticles are responsible for the disparate effect on the crystallization ability of PET. POLYM. COMPOS., 31:1504,1514, 2010. © 2009 Society of Plastics Engineers [source]