Home About us Contact | |||
Crystallite Size Distribution (crystallite + size_distribution)
Selected AbstractsEffect of a crystallite size distribution on X-ray diffraction line profiles and whole-powder-pattern fittingJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 3-2 2000J. I. Langford A distribution of crystallite size reduces the width of a powder diffraction line profile, relative to that for a single crystallite, and lengthens its tails. It is shown that estimates of size from the integral breadth or Fourier methods differ from the arithmetic mean of the distribution by an amount which depends on its dispersion. It is also shown that the form of `size' line profiles for a unimodal distribution is generally not Lorentzian. A powder pattern can be simulated for a given distribution of sizes, if it is assumed that on average the crystallites have a regular shape, and this can then be compared with experimental data to give refined parameters defining the distribution. Unlike `traditional' methods of line-profile analysis, this entirely physical approach can be applied to powder patterns with severe overlap of reflections, as is demonstrated by using data for nanocrystalline ceria. The procedure is compared with alternative powder-pattern fitting methods, by using pseudo-Voigt and Pearson VII functions to model individual line profiles, and with transmission electron microscopy (TEM) data. [source] Crystallization and melting behavior of HDPE in HDPE/teak wood flour composites and their correlation with mechanical propertiesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2010Kamini Sewda Abstract The nonisothermal crystallization behavior and melting characteristics of high-density polyethylene (HDPE) in HDPE/teak wood flour (TWF) composites have been studied by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD) methods. Composite formulations of HDPE/TWF were prepared by varying the volume fraction (,f) of TWF (filler) from 0 to 0.32. Various crystallization parameters evaluated from the DSC exotherms were used to study the nonisothermal crystallization behavior. The melting temperature (Tm) and crystallization temperature (Tp) of the composites were slightly higher than those of the neat HDPE. The enthalpy of melting and crystallization (%) decrease with increase in the filler content. Because the nonpolar polymer HDPE and polar TWF are incompatible, to enhance the phase interaction maleic anhydride grafted HDPE (HDPE-g-MAH) was used as a coupling agent. A shift in the crystallization and melting peak temperatures toward the higher temperature side and broadening of the crystallization peak (increased crystallite size distribution) were observed whereas crystallinity of HDPE declines with increase in ,f in both DSC and WAXD. Linear correlations were obtained between crystallization parameters and tensile and impact strength. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source] Polyaniline-multiwalled carbon nanotube composites: Characterization by WAXS and TGAJOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008T. Jeevananda Abstract Polyaniline/carboxylated multi-walled carbon nanotube (PAni/c-MWNT) nanocomposites have been synthesized by micellar aided emulsion polymerization with various c-MWNTs compositions, viz., 0.5, 1, 5, and 10 wt %. The microcrystalline parameters such as the nanocrystal size (,N,), lattice strain (g), interplanar distance (dhkl), width of the crystallite size distribution, surface weighted crystal size (Ds), and volume of the ordered regions were calculated from the X-ray data by using two mathematical models, namely the Exponential distribution and Reinhold distribution methods. The effects of heat ageing on the microcrystalline parameters of the PAni/c-MWNT nanocomposites were also studied and the results are correlated. The thermal stability and electrical resistivity of the PAni/c-MWNT nanocomposites were examined with thermogravimetric analysis (TGA) and a conventional two-probe method. The TGA data indicate that the thermal stability of the nanocomposites improved after the incorporation of c-MWNTs. The influence of temperature on the resistivity of the nanocomposites was also measured. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source] Hydrothermal Synthesis of Alpha Alumina (,-Al2O3) Powders: Study of the Processing Variables and Growth MechanismsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2010Wojciech L. Suchanek Alpha alumina (,-Al2O3) powders and ,-Al2O3/boehmite (,-AlOOH) mixtures with controlled ,-AlOOH contents were synthesized hydrothermally under alkaline or acidic conditions at 380°,435°C for 1,10 days, under 6.9,14.5 MPa pressure, from concentrated precursors without stirring. The precursors were formed by mixing different types of aluminum hydroxides with water, and optionally with ,-Al2O3 seeds, hydrogen peroxide, sulfuric acid, dopants (i.e., KMnO4), and/or other additives. The experiments were performed on industrial scale in large production autoclaves. The synthesized ,-Al2O3 powders exhibited up to 100% phase purity, 99.98% chemical purity, equiaxed morphology, low aggregation levels, narrow crystallite size distributions with primary particle sizes ranging between 100 nm and 40 ,m, and high reproducibility. Precursor types, seeds, chemical additives, and temperature/time of the hydrothermal synthesis were found to govern properties of the powders. Different growth mechanisms for nanosized and rough powders are discussed. Results of this study enable the use of hydrothermal ,-Al2O3 powders in a multitude of applications, and make their hydrothermal production a commercial reality. [source] Gas-phase hydrodechlorination of chlorobenzenes over silica-supported palladium and palladium,ytterbium,APPLIED ORGANOMETALLIC CHEMISTRY, Issue 6-7 2003Satyakrishna Jujjuri Abstract A 5% w/w palladium loading on silica has been achieved via impregnation of the support with Pd(C2H3O2)2 and { (DMF)10Yb2[Pd(CN)4]3} , precursors to deliver monometallic (Pd/SiO2) and bimetallic (Yb,Pd/SiO2) catalyst systems respectively. The catalytic action of each has been assessed in the continuous gas-phase hydrodechlorination (HDC) of chlorobenzene (CB) and 1,2-dichlorobenzene (1,2-DCB) (T = 423 K, inlet chlorine/palladium mol ratio of 5 × 103 h,1) and the hydrogenation of benzene (T = 423 K, inlet C6H6/palladium mol ratio of 35 h,1). Activation of both catalysts delivered similar palladium crystallite size distributions with an average palladium diameter of 5,6 nm where the ytterbium component (in Yb,Pd/SiO2) was present as a thin surface coating. The Pd,Yb bimetallic exhibited significantly higher HDC and hydrogenation activities, the former manifested by significantly greater fractional dechlorinations and benzene selectivities/yields. Yb/SiO2 proved inactive in terms of promoting hydrogen scission or addition and the promotional effect of ytterbium in Yb,Pd/SiO2 is discussed in terms of electron donation and hydrogen transfer via surface YbH2. Under identical reaction conditions, a lower HDC activity was recorded for 1,2-DCB compared with CB, a response that is attributed to steric constraints allied to the deactivating effect of the second chlorine substituent. Both Pd/SiO2 and Yb,Pd/SiO2 exhibited a decline in HDC activity with time-on-stream, but the bimetallic was significantly more resistant to deactivation. Copyright © 2003 John Wiley & Sons, Ltd. [source] |