Crystal Unit Cell (crystal + unit_cell)

Distribution by Scientific Domains


Selected Abstracts


Strain-Gradient Elasticity for Bridging Continuum and Atomistic Estimates of Stiffness of Binary Lennard-Jones Crystals

ADVANCED ENGINEERING MATERIALS, Issue 6 2010
Andrei A. Gusev
Lagrangian variational approach is employed to derive the equations of equilibrium of strain-gradient elasticity. For a periodic lamellar-morphology strain-gradient medium, we present an exact formula for the overall, system stiffness. We compare the formula with direct atomistic estimates of stiffness of binary Lennard-Jones crystals. The comparison reveals that the strain-gradient formula remains fairly accurate for all the crystals studied, including those with order of unity atoms in the crystal unit cell. Thus, one can surmise that the strain-gradient correction alone can already be sufficient to extend the scope of validity of continuum-level elasticity to near atomistic length scales. [source]


Combining solution wide-angle X-ray scattering and crystallography: determination of molecular envelope and heavy-atom sites

JOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 2 2009
Xinguo Hong
Solving the phase problem remains central to crystallographic structure determination. A six-dimensional search method of molecular replacement (FSEARCH) can be used to locate a low-resolution molecular envelope determined from small-angle X-ray scattering (SAXS) within the crystallographic unit cell. This method has now been applied using the higher-resolution envelope provided by combining SAXS and WAXS (wide-angle X-ray scattering) data. The method was tested on horse hemoglobin, using the most probable model selected from a set of a dozen bead models constructed from SAXS/WAXS data using the program GASBOR at 5,Å resolution (qmax = 1.25,Å,1) to phase a set of single-crystal diffraction data. It was found that inclusion of WAXS data is essential for correctly locating the molecular envelope in the crystal unit cell, as well as for locating heavy-atom sites. An anomalous difference map was calculated using phases out to 8,Å resolution from the correctly positioned envelope; four distinct peaks at the 3.2, level were identified, which agree well with the four iron sites of the known structure (Protein Data Bank code 1ns9). In contrast, no peaks could be found close to the iron sites if the molecular envelope was constructed using the data from SAXS alone (qmax = 0.25,Å,1). The initial phases can be used as a starting point for a variety of phase-extension techniques, successful application of which will result in complete phasing of a crystallographic data set and determination of the internal structure of a macromolecule to atomic resolution. It is anticipated that the combination of FSEARCH and WAXS techniques will facilitate the initial structure determination of proteins and provide a good foundation for further structure refinement. [source]


Crystal growth rate dispersion modeling using morphological population balance

AICHE JOURNAL, Issue 9 2008
Cai Y. Ma
Abstract Crystal growth in solution is a surface-controlled process. The variation of growth rates of different crystal faces is considered to be due to the molecular arrangement in the crystal unit cell as well as the crystal surface structures of different faces. As a result, for some crystals, the growth rate for a specific facet is not only a function of supersaturation, but also dependent on some other factors such as its size and the lattice spread angle. This phenomenon of growth rate dispersion (GRD) or fluctuation has been described in literature to have attributed to the formation of some interesting and sophisticated crystal structures observed in experimental studies. In this article, GRD is introduced to a recently proposed morphological population balance model to simulate the dynamic evolution of crystal size distribution in each face direction for the crystallization of potash alum, a chemical that has been reported to show GRD phenomenon and sophisticated crystal structures. The GRD is modeled as a function of the effective relative supersaturation, which is directly related to crystal size, lattice spread angle, relative supersaturation, and solution temperature. The predicted results clearly demonstrated the significant effect of GRD on the shape evolution of the crystals. © 2008 American Institute of Chemical Engineers AIChE J, 2008 [source]


Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2009
Yingssu Tsai
Lattice-translocation or crystal order,disorder phenomena occur when some layers or groups of molecules in a crystal are randomly displaced relative to other groups of molecules by a discrete set of vectors. In previous work, the effects of lattice translocation on diffraction intensities have been corrected by considering that the observed intensities are the product of the intensities from an ideal crystal (lacking disorder) multiplied by the squared magnitude of the Fourier transform of the set of translocation vectors. Here, the structure determination is presented of carboxysome protein CsoS1C from Halothiobacillius neapolitanus in a crystal exhibiting a lattice translocation with unique features. The diffraction data are fully accounted for by a crystal unit cell composed of two layers of cyclic protein hexamers. The first layer is fully ordered (i.e. has one fixed position), while the second layer randomly takes one of three alternative positions whose displacements are related to each other by threefold symmetry. Remarkably, the highest symmetry present in the crystal is P3, yet the intensity data (and the Patterson map) obey 6/m instead of symmetry; the intensities exceed the symmetry expected from combining the crystal space group with an inversion center. The origin of this rare phenomenon, known as symmetry enhancement, is discussed and shown to be possible even for a perfectly ordered crystal. The lattice-translocation treatment described here may be useful in analyzing other cases of disorder in which layers or groups of molecules are shifted in multiple symmetry-related directions. [source]


Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2009
Matthew Mitchell
Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8,Å resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0,Å. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetric unit capsid have been determined by molecular-replacement methods and structure determination is in progress. [source]