Adult Growth (adult + growth)

Distribution by Scientific Domains


Selected Abstracts


Host,parasite interactions and competition between tubificid species in a benthic community

FRESHWATER BIOLOGY, Issue 8 2009
L. C. STEINBACH ELWELL
Summary 1. Parasites can be important determinants of host community structure while host community structure can influence the success of parasites, although both are often overlooked. In two laboratory experiments, we examined interactions among Myxobolus cerebralis syn Myxosoma cerebralis Höfer, the myxozoan parasite that causes salmonid whirling disease, and two coexisting tubificid species: Tubifex tubifex (Müller), which is the alternate host of the parasite, and Limnodrilus hoffmeisteri Claparède, which is not susceptible. In the first experiment, we examined T. tubifex infection prevalence when exposed to nine doses of spores. In the second experiment, we examined tubificid and parasite success under three spore doses when tubificids were combined in a response surface experimental design used to detect interactions among species. 2. The outcomes of interactions between tubificid species were complex. The number and biomass of offspring of both tubificid species were density dependent when in monoculture or in combination with the other species. Adult growth of T. tubifex was also density dependent in monoculture, but when L. hoffmeisteri replaced one-half of the T. tubifex in the high-density treatment, adult growth of T. tubifex was higher than in monoculture. Adult growth of L. hoffmeisteri was always density independent. Whether T. tubifex was exposed to the parasite or not did not change the outcome of these interactions. However, adult growth of T. tubifex, but not L. hoffmeisteri, was highest when M. cerebralis was present. 3. Infection prevalence of T. tubifex increased with increasing spore dose. Infection prevalence was lowest in the high-density T. tubifex monoculture and highest in the low-density T. tubifex monoculture and when T. tubifex was in combination with L. hoffmeisteri. 4. Both intraspecific and interspecific competition influenced tubificid success, but T. tubifex gained some competitive advantage through increased adult growth when in combination with L. hoffmeisteri. Whether T. tubifex was exposed to the parasite or not did not change the outcome of the interactions between the tubificid species. 5. The presence of L. hoffmeisteri did not decrease the prevalence of infection in T. tubifex, suggesting that parasite success was unaltered by the presence of this non-susceptible species. [source]


In situ reproduction, abundance, and growth of young-of-year and adult largemouth bass in a population exposed to polychlorinated biphenyls

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2004
Dudley W. Reiser
Abstract We conducted a two-year field study (2000,2001) in the Housatonic River, Massachusetts (USA) to determine if we could detect in situ population-level effects on largemouth bass (Micropterus salmoides) exposed to elevated levels of polychlorinated biphenyls (PCBs). Calculated whole-body PCB concentrations in adult bass in 2002 averaged 121 mg/kg (range = 34,556 mg/kg). Polychlorinated biphenyl concentrations in young-of-year (YOY) composites in 2000 and 2002 averaged 28 mg/kg (range = 21,41 mg/kg) and 19 mg/kg (range = 16,24 mg/kg), respectively. Laboratory studies of fish have reported PCB toxicity at exposure levels below and within the range of those found in the Housatonic River. We evaluated five field-derived metrics: reproductive activity, relative abundance of YOY, YOY growth rates, adult growth, and adult condition to determine whether we could detect effects of PCBs in the largemouth bass population. These computed metrics, when compared with data sets assembled for numerous largemouth bass populations in North America, provided no evidence of population-level impairment. Results of this study suggest that PCB tissue concentrations associated with effects in laboratory studies do not necessarily translate to detectable effects on largemouth bass populations in their natural environment. [source]


Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003
P. J. McCaffery
Abstract Retinoic acid (RA) is essential for both embryonic and adult growth, activating gene transcription via specific nuclear receptors. It is generated, via a retinaldehyde intermediate, from retinol (vitamin A). RA levels require precise regulation by controlled synthesis and catabolism, and when RA concentrations deviate from normal, in either direction, abnormal growth and development occurs. This review describes: (i) how the pattern of RA metabolic enzymes controls the actions of RA; and (ii) the type of abnormalities that result when this pattern breaks down. Examples are given of RA control of the anterior/posterior axis of the hindbrain, the dorsal/ventral axis of the spinal cord, as well as certain sex-specific segments of the spinal cord, using varied animal models including mouse, quail and mosquitofish. These functions are highly sensitive to abnormal changes in RA concentration. In rodents, the control of neural patterning and differentiation are disrupted when RA concentrations are lowered, whereas inappropriately high concentrations of RA result in abnormal development of cerebellum and hindbrain nuclei. The latter parallels the malformations seen in the human embryo exposed to RA due to treatment of the mother with the acne drug Accutane (13- cis RA) and, in cases where the child survives beyond birth, a particular set of behavioural anomalies can be described. Even the adult brain may be susceptible to an imbalance of RA, particularly the hippocampus. This report shows how the properties of RA as a neural induction agent and organizer of segmentation can explain the consequences of RA depletion and overexpression. [source]


Host,parasite interactions and competition between tubificid species in a benthic community

FRESHWATER BIOLOGY, Issue 8 2009
L. C. STEINBACH ELWELL
Summary 1. Parasites can be important determinants of host community structure while host community structure can influence the success of parasites, although both are often overlooked. In two laboratory experiments, we examined interactions among Myxobolus cerebralis syn Myxosoma cerebralis Höfer, the myxozoan parasite that causes salmonid whirling disease, and two coexisting tubificid species: Tubifex tubifex (Müller), which is the alternate host of the parasite, and Limnodrilus hoffmeisteri Claparède, which is not susceptible. In the first experiment, we examined T. tubifex infection prevalence when exposed to nine doses of spores. In the second experiment, we examined tubificid and parasite success under three spore doses when tubificids were combined in a response surface experimental design used to detect interactions among species. 2. The outcomes of interactions between tubificid species were complex. The number and biomass of offspring of both tubificid species were density dependent when in monoculture or in combination with the other species. Adult growth of T. tubifex was also density dependent in monoculture, but when L. hoffmeisteri replaced one-half of the T. tubifex in the high-density treatment, adult growth of T. tubifex was higher than in monoculture. Adult growth of L. hoffmeisteri was always density independent. Whether T. tubifex was exposed to the parasite or not did not change the outcome of these interactions. However, adult growth of T. tubifex, but not L. hoffmeisteri, was highest when M. cerebralis was present. 3. Infection prevalence of T. tubifex increased with increasing spore dose. Infection prevalence was lowest in the high-density T. tubifex monoculture and highest in the low-density T. tubifex monoculture and when T. tubifex was in combination with L. hoffmeisteri. 4. Both intraspecific and interspecific competition influenced tubificid success, but T. tubifex gained some competitive advantage through increased adult growth when in combination with L. hoffmeisteri. Whether T. tubifex was exposed to the parasite or not did not change the outcome of the interactions between the tubificid species. 5. The presence of L. hoffmeisteri did not decrease the prevalence of infection in T. tubifex, suggesting that parasite success was unaltered by the presence of this non-susceptible species. [source]


Molt and growth of an estuarine crab, Chasmagnathus granulatus (Brachyura: Varunidae), in Mar Chiquita coastal lagoon, Argentina

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 5 2004
T. A. Luppi
Summary Juvenile and adult growth of Chasmagnathus granulatus was studied in the laboratory in terms of molt increment in size (MI) and the intermolt period (IP), comparing data obtained from short-term (STE) and long-term (LTE) laboratory experiments. Crabs in a pre-molt condition were collected for STE, including the entire size range of the species. Larger crabs remained in the laboratory no more than 14 days; the average time to molt was 5.8 ± 3.1 days. We registered the molt of 94 females, 64 males and 34 undifferentiated juveniles and calculated their MI. Moreover, 24 males and four females were reared in the laboratory over 3 years (LTE). Hiatt diagrams did not show sex-specific differences between juveniles of both sexes, but revealed differences between juveniles and adults in each sex as well as between adults of both sexes. The MI decreased gradually with size; this pattern was described with a quadratic model. The IP increased exponentially with size. The presence of regenerating limbs diminished the MI. The abdomen of females reached its final shape and maximum relative width at functional maturity. Growth curves for both sexes were calculated using the von Bertalanffy model, but this model yielded an underestimation of the actual maximum size of this crab. [source]


Age at first reproduction and economic change in the context of differing kinship ecologies

AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 4 2009
Donna L. Leonetti
Kinship systems which tend to be based on ecologies of subsistence also assign differential power, privilege, and control to human connections that present pathways for manipulation of resource access and transfer. They can be used in this way to channel resource concentrations in women and hence their reproductive value. Thus, strategic female life course trade-offs and their timing are likely to be responsive to changing preferences for qualities in women as economic conditions change. Female life histories are studied in two ethnic groups with differing kinship systems in NE India where the competitive market economy is now being felt by most households. Patrilineal Bengali (599 women) practice patrilocal residence with village exogamy and matrilineal Khasi (656 women) follow matrilocal residence with village endogamy, both also normatively preferring three-generation extended households. These households have helpful senior women and significantly greater income. Age at first reproduction (AFR), achieved adult growth (height) and educational level (greater than 6 years or less) are examined in reproductive women, ages 16,50. In both groups, women residing normatively are older at AFR and taller than women residing nonnormatively. More education is also associated with senior women. Thus, normative residence may place a woman in the best reproductive location, and those with higher reproductive and productive potential are often chosen as households face competitive market conditions. In both groups residing in favorable reproductive locations is associated with a faster pace of fertility among women, as well as lower offspring mortality among Khasi, to compensate for a later start. Am. J. Hum. Biol., 2009. © 2009 Wiley-Liss, Inc. [source]


Shade facilitates an invasive stem succulent in a chenopod shrubland in South Australia

AUSTRAL ECOLOGY, Issue 5 2003
TANJA I. LENZ
Abstract The invasive stem succulent Orbea variegata (L) Haw. (Asclepiadaceae) tends to be more abundant underneath shrubs than in open areas in chenopod shrublands near Whyalla, South Australia. To assess the role of facilitation in the life cycle of O. variegata, we investigated the effect of chenopod shrubs on different life stages of the species by experimentally manipulating temperature, light, soil moisture and nutrient levels. Experimental results suggest that the reduction in light and temperature under shrubs, but not increased nutrient levels, are the main facilitative mechanisms for O. variegata. Temperatures above 30°C, which are more likely to occur on the soil surface of open areas than under shrubs, inhibited seed germination. Seedling survival at low watering frequency and the growth of established ramets were increased by 75,80% shade cloth. Ramets growing in full light contained a high concentration of anthocyanin pigments. One of the functions of these pigments is to absorb excess radiation, suggesting that O. variegata experiences radiation stress in full light. In the field O. variegata performed considerably better under Atriplex vesicaria Heward ex Benth. (Chenopodiaceae) or under 75,80% shade cloth than in full light. Monthly irrigation of 20 mm did not reduce this positive effect of the A. vesicaria canopy on O. variegata, suggesting that O. variegata is inhibited by high light intensities or temperatures, independent of water availability. In conclusion, whereas shrub canopies do not seem to be required for the establishment or survival of O. variegata, shrubs improve adult growth and can improve establishment. The possibility of exotic plants being facilitated by other plants has to be taken into account when assessing the probability and rate of invasion. [source]