Adsorption Phenomena (adsorption + phenomenon)

Distribution by Scientific Domains


Selected Abstracts


CE coupled to MALDI with novel covalently coated capillaries

ELECTROPHORESIS, Issue 4 2010
Stefan Bachmann
Abstract CE offers the advantage of flexibility and method development options. It excels in the area of separation of ions, chiral, polar and biological compounds (especially proteins and peptides). Masking the active sites on the inner surface of a bare fused silica capillary wall is often necessary for CE separations of basic compounds, proteins and peptides. The use of capillary surface coating is one of the approaches to prevent the adsorption phenomena and improve the repeatability of migration times and peak areas of these analytes. In this study, new capillary coatings consisting of (i) derivatized polystyrene nanoparticles and (ii) derivatized fullerenes were investigated for the analysis of peptides and protein digest by CE. The coated capillaries showed excellent run-to-run and batch-to-batch reproducibility (RSD of migration time ,0.5% for run-to-run and ,9.5% for batch-to-batch experiments). Furthermore, the capillaries offer high stability from pH 2.0 to 10.0. The actual potential of the coated capillaries was tested by combining CE with MALDI-MS for analysing complex samples, such as peptides, whereas the overall performance of the CE-MALDI-MS system was investigated by analysing a five-protein digest mixture. Subsequently, the peak list (peptide mass fingerprint) generated from the mass spectra of each fraction was entered into the Swiss-Prot database in order to search for matching tryptic fragments using the MASCOT software. The sequence coverage of analysed proteins was between 36 and 68%. The established technology benefits from the synergism of high separation efficiency and the structure selective identification via MS. [source]


Adsorption of Cd(II), Pb(II), and Ag(I) in aqueous solution on hollow chitosan microspheres

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2010
Shan Wang
Abstract Cross-linked chitosans synthesized by the inverse emulsion cross-link method were used to investigate adsorption of three metal ions [Cd(II), Pb(II), and Ag(I)] in an aqueous solution. The chitosan microsphere, was characterized by FTIR and SEM, and adsorption of Cd(II), Pb(II), and Ag(I) ions onto a cross-linked chitosan was examined through analysis of pH, agitation time, temperature, and initial concentration of the metal. The order of adsorption capacity for the three metal ions was Cd2+ > Pb2+ > Ag+. This method showed that adsorption of the three metal ions in an aqueous solution followed the monolayer coverage of the adsorbents through physical adsorption phenomena and coordination because the amino (NH2) and/or hydroxy (OH) groups on chitosan chains serve as coordination sites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


Grafted Polymer Chains Interacting with Substrates: Computer Simulations and Scaling

MACROMOLECULAR THEORY AND SIMULATIONS, Issue 9 2008
Radu Descas
Abstract We review scaling methods and computer simulations used in the study of the static and dynamic properties of polymer chains tethered to adsorbing surfaces under good solvent conditions. By varying both the grafting density and the monomer/surface interactions a variety of phases can form. In particular, for attractive interactions between the chains and the surface the classical mushroom-brush transition known for repulsive substrates splits up into an overlap transition and a saturation transition which enclose a region of semidilute surface states. At high grafting densities oversaturation effects and a transition to a brush state can occur. We emphasize the role of the critical adsorption parameters for a correct description and understanding of such polymer adsorption phenomena. [source]


In situ reinforcement of poly(butylene terephthalate) and butyl rubber by liquid crystalline polymer

POLYMER COMPOSITES, Issue 5 2009
S. Kumar
Ternary in situ butyl rubber (IIR)/poly(butylene terephthalate) (PBT) and liquid crystalline polymer (LCP) blends were prepared by compression molding. The LCP used was a versatile Vectra A950, and the matrix material was IIR/PBT 50/50 by weight. Morphological, thermal, and mechanical properties of blends were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), differential scanning calorimetry, and thermogravimetric analysis (TGA). Microscopy study (SEM) showed that formation of fibers is increasing with the increasing amount of LCP A950. Microscopic examination of the fractured surface confirmed the presence of a polymer coating on LCP fibrils. This can be attributed to some interactions including both chemical and physical one. The increased compatibility in polymer blends, consisting of IIR/PBT, by the presence of LCP A950 may be explained by the adsorption phenomena of the polymer chains onto the LCP fibrils. SEM and AFM images provided the evidence of the interaction between IIR/PBT and the LCP. Dynamic mechanical analyses (DMA) and TGA measurements showed that the composites possessed a remarkably higher modulus and heat stability than the unfilled system. Storage modulus for the ternary blend containing 50 wt% of LCP exhibits about 94% increment compared with binary blend of IIR/PBT. From the above results, it is suggested that the LCP A950 can act as reinforcement agent in the blends. Moreover, the fine dispersion of LCP was observed with no extensional forces applied during mixing, indicating the importance of interfacial adhesion for the fibril formation. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]