Home About us Contact | |||
Adsorption Methods (adsorption + methods)
Selected AbstractsDetermination of surface area of soil by adsorption methodsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2002E. A. Ferreiro Summary How significant are estimates of surface areas of soils obtained by adsorption methods? To answer this we tested the applicability of an equation that relates monolayer coverage (N) of an adsorbent with the area (A) of adsorbate, NAz = k, for six soil samples using six adsorbates of different sizes. The data obtained confirm the validity of the equation with the z parameter ranging between 1.25 and 1.41. Hence each soil sample showed preferences towards small-sized adsorbates for which the product NA (calculated surface area) is inversely related to the size of adsorbate. We also demonstrated that the equation has roots in the Langmuir adsorption equation. [source] Simulation of binary mixture adsorption of methane and CO2 at supercritical conditions in carbonsAICHE JOURNAL, Issue 3 2006Yohanes Kurniawan Abstract Knowledge of the adsorption behavior of coal-bed gases, mainly under supercritical high-pressure conditions, is important for optimum design of production processes to recover coal-bed methane and to sequester CO2 in coal-beds. Here, we compare the two most rigorous adsorption methods based on the statistical mechanics approach, which are Density Functional Theory (DFT) and Grand Canonical Monte Carlo (GCMC) simulation, for single and binary mixtures of methane and carbon dioxide in slit-shaped pores ranging from around 0.75 to 7.5 nm in width, for pressure up to 300 bar, and temperature range of 308-348 K, as a preliminary study for the CO2 sequestration problem. For single component adsorption, the isotherms generated by DFT, especially for CO2, do not match well with GCMC calculation, and simulation is subsequently pursued here to investigate the binary mixture adsorption. For binary adsorption, upon increase of pressure, the selectivity of carbon dioxide relative to methane in a binary mixture initially increases to a maximum value, and subsequently drops before attaining a constant value at pressures higher than 300 bar. While the selectivity increases with temperature in the initial pressure-sensitive region, the constant high-pressure value is also temperature independent. Optimum selectivity at any temperature is attained at a pressure of 90-100 bar at low bulk mole fraction of CO2, decreasing to approximately 35 bar at high bulk mole fractions. © 2005 American Institute of Chemical Engineers AIChE J, 2006 [source] Positron Annihilation Lifetimes in Cucurbiturils: Evidence of Internal Inclusion of Gold in CB[7]CHEMPHYSCHEM, Issue 5 2009Pedro Montes-Navajas Abstract Positron lifetime spectroscopy serves to determine the void volumes of cucurbituril (CB) capsules, which are not amenable to standard gas adsorption methods. In the case of the host,guest complex Au§CB[7], it also provides evidence of the inclusion of gold nanoparticles in the CB cavity (see space-filling model; Au golden, C gray, H cyan, N blue, O red). Positron annihilation lifetime (PAL) measurements are carried out to determine the cavity dimensions of hydrated and dehydrated cucurbiturils (CB[n]; n=5,6,7,8). In the case of hydrated samples, the dimensions of the cavity are unrelated to the number of glycoluril units of the CB, whereas for dehydrated samples the cavity dimensions measured by PAL follow the expected order, although the experimental values obtained by PAL are significantly smaller than the dimensions of each CB determined by crystallography. For a host,guest complex in which colloidal gold nanoparticles are assumed to be included inside CB[7], a significant reduction of the cavity size is measured. This represents an experimental evidence of the inclusion of gold inside CB[7], which complements previous high-resolution transmission electron microscopy (TEM) images. [source] |