Adsorption Ability (adsorption + ability)

Distribution by Scientific Domains


Selected Abstracts


Molecular imprinted solid-phase extraction of huperzine A from Huperzia Serrata

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2009
Guosong Wang
Abstract On the basis of the non-covalent interaction between template and monomer, porous molecularly imprinted polymers (MIPs) were synthesized by a thermal-initiated polymerization method using huperzine A as template, acrylamide, or methacrylic acid as function monomer, ethylene glycol dimethacrylate as cross-linking agent. The interaction between template and functional monomers was studied by UV spectrophotometry, which showed a formation of huperzine A-monomer complexes with stoichiometric ratio of 1 : 2 in the pre-polymerized systems. The resultant MIP particles were tested in the equilibrium binding experiment to analyze their adsorption ability to huperzine A, and were characterized by Fourier Transform Infrared (FTIR) study. The recognition properties of MIP were estimated in solid-phase extraction by selecting four compounds (isolated from the Chinese herb Huperzia serrata) as substrates, and were compared with and prior to those of the NIP. High affinity and adsorption of MIP1 which was prepared in chloroform with huperzine A as imprinted molecule, and acrylamide (AM) as functional monomer, made an attractive application of MIP1 in separation processes. In final, using MIP1 solid-phase extraction micro-column, huperzine A was enriched and separated from the real extraction sample of Huperzia serrata. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Preparation and adsorption characteristic of polymeric microsphere with strong adsorbability for creatinine

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2008
Baojiao Gao
Abstract Cross-linking terpolymer microspheres (HEMA/NVP/MBA; it can also be designated as HEMA/NVP because HEMA and NVP are main components) with an average diameter of 180 µm, were prepared via inverse suspension copolymerization by using 2-hydroxyethyl methacrylate (HEMA) and N -vinylpyrrolidone (NVP) as monomers and N,N,-methylene bisacrylamide (MBA) as cross-linked agent. The microsphere HEMA/NVP was chemically modified with 3,5-dinitrobenzoyl chloride (DNBC), and the functional microsphere DNBZ-HEMA/NVP, on which a great number of 3,5-dinitrobenzoate group (DNBZ) were bound, was obtained. The functional microsphere DNBZ-HEMA/NVP were characterized with FTIR and the chemical analysis method. The adsorption characteristics and mechanism of the absorption of DNBZ-HEMA/NVP for creatine was mainly studied. The results of static adsorption experiments show that the functional microsphere DNBZ-HEMA/NVP has very strong adsorption ability for creatinine, and the saturated adsorption amount is 25 mg/g. The adsorption capacity of the functional microsphere DNBZ-HEMA/NVP for creatinine is enhanced 20 times as against unmodified microsphere HEMA/NVP. The adsorption capacity is smaller, at lower and higher pH, and has a maximum as pH 8.5. The higher the salinity of the medium, the smaller the adsorption capacity. The adsorption capacity decreases with increasing temperature. The study results show that the adsorption of the microsphere DNBZ-HEMA/NVP for creatinine is ascribed to a chemical adsorption by driving of electrostatic interaction. © 2008 Wiley Periodicals, Inc. J Biochem Mol Toxicol 22:166,174, 2008; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20221 [source]


Chromatographic partitioning of cesium by a macroporous silica-calix[4]arene-crown supramolecular recognition composite

AICHE JOURNAL, Issue 10 2010
Anyun Zhang
Abstract A macroporous silica-based 1,3-[(2,4-diethyl-heptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) supramolecular recognition polymeric composite, (Calix[4]+Oct)/SiO2 -P, was synthesized. It was performed by impregnating and immobilizing Calix[4]arene-R14 and n -octanol into the pores of the macroporous SiO2 -P particles support. n -Octanol was used to modify Calix[4]arene-R14 through hydrogen bonding. The effect of eight typical fission products contained in highly active liquid waste (HLW) on the adsorption of Cs(I), one of the heat generators, was investigated at 298 K by examining the effect of contact time and the HNO3 concentration in a range of 0.3,7.0 M. (Calix[4]+Oct)/SiO2 -P showed excellent adsorption ability and high selectivity for Cs(I) at 4.0 M HNO3 over the tested elements. The partitioning of Cs(I) from a simulated HLW was operated by (Calix[4]+Oct)/SiO2 -P packed column. Cs(I) was able to be effectively eluted by water and separated from the tested metals. It is demonstrated that (Calix[4]+Oct)/SiO2 -P is promising to apply in chromatographic separation of Cs(I) from HLW. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source]


Development of Cellulose-DNA Immunoadsorbent

ARTIFICIAL ORGANS, Issue 2 2002
Deling Kong
Abstract: The aim of this study was to prepare a DNA immunoadsorbent for the specific, extracorporeal removal of anti-DNA antibodies from the blood of patients with systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Two kinds of cellulose beads were applied as a carrier. Calf thymus DNA was covalently coupled to the carrier using the epichlorohydrin method. Efforts were focused on optimization of conditions for activation and coupling, trying to couple as much DNA as possible to a certain amount of carrier. It was found that the activation level increased with the increase of NaOH concentration and the amount of epichlorohydrin used. The mole of epichlorohydrin must be in excess of that of NaOH because excess NaOH could react further with the epoxy groups in the beads resulting in a decrease of activation level. High activation level could be obtained in a medium of 3.0 M NaOH. The DNA coupling was found to be mainly temperature and pH dependent. Using 0.1 M Tris-HCl buffer, pH 8 at a temperature of 50,90°C, more than 3 mg of DNA could be coupled to 1 ml of wet beads. Prolonging the coupling reaction under 50°C to 72 h resulted in the same coupling capacity as that obtained under 90°C. To evaluate the adsorption ability for anti-DNA of this immunoadsorbent, batch and circulation tests were applied using SLE patient plasma. The immunoadsorbents showed excellent adsorption capacity, especially the cellulose with smaller size (200,300 ,m). The incubation of 20 ml of patient's plasma with 1 ml of adsorbent resulted in an 80% decline in the anti-DNA antibody level. In the circulation tests, 30 ml of plasma was circulated through a column containing 3 ml of adsorbent. The maximum decline in anti-DNA level, 80%, was obtained after 60 min. Such high adsorption capacity and high adsorption rate suggest this immunoadsorbent may be used for treatment. For comparison, 1,4-butanediol diglycidyl ether activation method and other DNA sources were tested with the same protocol. [source]


Limitation of immunoaffinity column for the removal of abundant proteins from plasma in quantitative plasma proteomics

BIOMEDICAL CHROMATOGRAPHY, Issue 5 2009
Tomoko Ichibangase
Abstract In plasma proteomics, before a proteome analysis, it is essential to prepare protein samples without high-abundance proteins, including albumin, via specific preparation techniques, such as immunoaffinity capture. However, our preliminary experiments suggested that functional changes with use alter the ability of the immunoaffinity column. Thus, in this study, to evaluate the changes of the removal ability of abundant proteins from plasma by the immunoaffinity column, plasma proteome analysis was performed for the long-term test for the reproducibility of the affinity column using the fluorogenic derivatization,liquid chromatography,tandem mass spectrometry method combined with an IgY column. The specific adsorption for albumin decreased with an increase in the number of the column usage before its expiration date. Moreover, it was demonstrated that hydrophobic high molecular weight compounds in plasma adsorbed onto the column materials surface contributed to the functional changes from specific immunoaffinity adsorption into hydrophobic interaction. These results suggested that, in quantitative plasma proteomics studies, it is important to keep in mind the risk of not only the nonselective loss but also the changes in the adsorption ability of the immunoafinity column. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Computational Investigation of Hydrogen Adsorption by Alkali-Metal-Doped Organic Molecules: Role of Aromaticity

CHEMPHYSCHEM, Issue 2 2009
Kancharlapally Srinivasu
Abstract Hydrogen storage: Simple organic molecular systems (CnHn, n=4, 5, 6, 8) are proposed for hydrogen storage purposes based on the concept of aromaticity. The adsorption of hydrogen is attributed to pronounced charge transfer from the sodium atom (green, see picture) to the organic systems and the electrostatic interaction between the ion and hydrogen molecules. Theoretical studies on hydrogen adsorption in small organic molecular systems, such as cyclobutadiene (C4H4), the cyclopentadienyl radical (C5H5), benzene (C6H6), and cyclooctatetraene (C8H8) and their metal-doped modifications, are carried out. Our results reveal that the simple van der Waals surfaces of pure organic molecules are not good enough for hydrogen adsorption due to the weak interaction between hydrogen molecules and the organic molecular surface. However, doping of alkali-metal atoms in the above organic molecular systems increases their hydrogen adsorption ability significantly, mainly due to electron transfer from the metal atom to the carbon surface. This charged surface created around the metal atom is found to enhance the hydrogen adsorption capacity of the complex considerably, both in terms of interaction energy and the number of adsorbed hydrogen molecules, with a hydrogen adsorption capacity ranging from 10 to 12 wt,%. The role of aromaticity in such molecular systems is important in stabilizing these ionized organo-alkali-metal complexes. [source]