Home About us Contact | |||
Adhesion Proteins (adhesion + protein)
Kinds of Adhesion Proteins Selected AbstractsMechanisms of fibrinogen-induced microvascular dysfunction during cardiovascular diseaseACTA PHYSIOLOGICA, Issue 1 2010D. Lominadze Abstract Fibrinogen (Fg) is a high molecular weight plasma adhesion protein and a biomarker of inflammation. Many cardiovascular and cerebrovascular disorders are accompanied by increased blood content of Fg. Increased levels of Fg result in changes in blood rheological properties such as increases in plasma viscosity, erythrocyte aggregation, platelet thrombogenesis, alterations in vascular reactivity and compromises in endothelial layer integrity. These alterations exacerbate the complications in peripheral blood circulation during cardiovascular diseases such as hypertension, diabetes and stroke. In addition to affecting blood viscosity by altering plasma viscosity and erythrocyte aggregation, growing experimental evidence suggests that Fg alters vascular reactivity and impairs endothelial cell layer integrity by binding to its endothelial cell membrane receptors and activating signalling mechanisms. The purpose of this review is to discuss experimental data, which demonstrate the effects of Fg causing vascular dysfunction and to offer possible mechanisms for these effects, which could exacerbate microcirculatory complications during cardiovascular diseases accompanied by increased Fg content. [source] RNAi knockdown of the focal adhesion protein TES reveals its role in actin stress fibre organisationCYTOSKELETON, Issue 3 2005Elen Griffith Abstract TES was originally identified as a candidate tumour suppressor gene and has subsequently been found to encode a novel focal adhesion protein. As well as localising to cell-matrix adhesions, TES localises to cell-cell contacts and to actin stress fibres. TES interacts with a variety of cytoskeletal proteins including zyxin, mena, VASP, talin and actin. There is evidence that TES may function in actin-dependent processes as overexpression of TES results in increased cell spreading and decreased cell motility. Together with TES's interacting partners, these data suggest that TES might be involved in regulation of the actin cytoskeleton. Here, for the first time, we have used RNAi to successfully knockdown TES in HeLa cells and we demonstrate that loss of TES from focal adhesions results in loss of actin stress fibres. Similarly, and as previously reported, RNAi-mediated knockdown of zyxin results in loss of actin stress fibres. TES siRNA treated cells show reduced RhoA activity, suggesting that the Rho GTPase pathway may be involved in the TES RNAi-induced loss of stress fibres. We have also used RNAi to examine the requirement of TES and zyxin for each other's localisation at focal adhesions, and we propose a hierarchy of recruitment, with zyxin being first, followed by VASP and then TES. Cell Motil. Cytoskeleton 60:140,152, 2005. © 2005 Wiley-Liss, Inc. [source] Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapsesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007Elaine C. Budreck Abstract Synaptic adhesion molecules are thought to play a critical role in the formation, function and plasticity of neuronal networks. Neuroligins (NL1,4) are a family of presumptive postsynaptic cell adhesion molecules. NL1 and NL2 isoforms are concentrated at glutamatergic and GABAergic synapses, respectively, but the cellular expression and synaptic localization of the endogenous NL3 and NL4 isoforms are unknown. We generated a panel of NL isoform-specific antibodies and examined the expression, developmental regulation and synaptic specificity of NL3. We found that NL3 was enriched in brain, where NL3 protein levels increased during postnatal development, coinciding with the peak of synaptogenesis. Subcellular fractionation revealed a concentration of NL3 in synaptic plasma membranes and postsynaptic densities. In cultured hippocampal neurons, endogenous NL3 was highly expressed and was localized at both glutamatergic and GABAergic synapses. Clustering of NL3 in hippocampal neurons by neurexin-expressing cells resulted in coaggregation of NL3 with glutamatergic and GABAergic scaffolding proteins. Finally, individual synapses contained colocalized NL2 and NL3 proteins, and coimmunoprecipitation studies revealed the presence of NL1,NL3 and NL2,NL3 complexes in brain extracts. These findings suggest that rodent NL3 is a synaptic adhesion molecule that is a shared component of glutamatergic and GABAergic synapses. [source] Interaction of endothelial cells with self-assembled monolayers for potential use in drug-eluting coronary stentsJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2009Gopinath Mani Abstract Drug-eluting stents (DES) are implanted in patients to treat in-stent restenosis. Commercially available DES use polymers for coating and releasing drugs. Several studies have showed that polymer coatings cause adverse reactions. Delayed endothelialization of polymer-coated DES leads to late stent thrombosis. Recently, the potential for using self-assembled monolayers (self-assembled monolayers (SAMs),organic constructs composed of (a) chemical groups which attach to metal surfaces, (b) long hydrocarbon chains, and (c) terminal functional groups) as an alternate drug delivery system for coronary stents has been demonstrated. In this study, the interaction of human aortic endothelial cells (HAECs) with SAMs and therapeutic SAMs (therapeutic self-assembled monolayers (TSAMs),SAMs derivatized with the drug, flufenamic acid) was investigated. HAECs were cultured on plain glass, control, SAMs-, and TSAMs-coated titanium (Ti) and gold (Au) specimens. The viability and proliferation of HAECs were investigated using MTT colorimetric assay. The adhesion of HAECs on SAMs and TSAMs was equivalent to that of control metal surfaces and superior to that of plain glass surfaces. The cells continued to proliferate on both SAMs and TSAMs even though the rate of proliferation was slower than plain glass or control-Ti. The spreading of HAECs on TSAMs with typical polygonal shape indicated that these surfaces are conducive to endothelialization. The expression of surface adhesion protein, platelet endothelial cell adhesion molecule-1, on TSAMs indicated that the endothelial cells preserved their phenotype on these surfaces. Thus, this study demonstrated that SAMs and TSAMs do not elicit an adverse response from endothelial cells in in vitro conditions. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2009 [source] Leupaxin Is a Critical Adaptor Protein in the Adhesion Zone of the Osteoclast,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 4 2003Anandarup Gupta Abstract Leupaxin is a cytoskeleton adaptor protein that was first identified in human macrophages and was found to share homology with the focal adhesion protein, paxillin. Leupaxin possesses several protein-binding domains that have been implicated in targeting proteins such as focal adhesion kinase (pp125FAK) to focal adhesions. Leupaxin can be detected in monocytes and osteoclasts, both cells of hematopoietic origin. We have identified leupaxin to be a component of the osteoclast podosomal signaling complex. We have found that leupaxin in murine osteoclasts is associated with both PYK2 and pp125FAK in the osteoclast. Treatment of osteoclasts with TNF-, and soluble osteopontin were found to stimulate tyrosine phosphorylation of both leupaxin and leupaxin-associated PYK2. Leupaxin was found to co-immunoprecipitate with the protein tyrosine phosphatase PTP-PEST. The cellular distribution of leupaxin, PYK2, and protein tyrosine phosphorylation-PEST co-localized at or near the osteoclast podosomal complex. Leupaxin was also found to associate with the ARF-GTPase-activating protein, paxillin kinase linker p95PKL, thereby providing a link to regulators of cytoskeletal dynamics in the osteoclast. Overexpression of leupaxin by transduction into osteoclasts evoked numerous cytoplasmic projections at the leading edge of the cell, resembling a motile phenotype. Finally, in vitro inhibition of leupaxin expression in the osteoclast led to a decrease in resorptive capacity. Our data suggest that leupaxin may be a critical nucleating component of the osteoclast podosomal signaling complex. [source] Embryonic undifferentiated cells show scattering activity on a surface coated with immobilized E-cadherinJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2008Masato Nagaoka Abstract Rearrangement of cell,cell adhesion is a critical event in embryonic development and tissue formation. We investigated the regulatory function of E-cadherin, a key adhesion protein, in the developmental process by using E-cadherin/IgG Fc fusion protein as an adhesion matrix in cell culture. F9 embryonal carcinoma cells usually form colonies when cultured on gelatin or fibronectin matrices. However, F9 cells cultured on the E-cadherin/IgG Fc fusion protein matrix formed a scattered distribution, with a different cytoskeletal organization and E-cadherin-rich protrusions that were regulated by Rac1 activity. The same scattering activity was observed in P19 embryonal carcinoma cells. In contrast, three types of differentiated cells, NMuMG mammary gland cells, MDCK kidney epithelial cells, and mouse primary isolated hepatocytes, did not show the scattering activity observed in F9 and P19 cells. These results suggest that migratory behavior on an E-cadherin-immobilized surface is only observed in embryonic cells, and that the regulatory mechanisms underlying E-cadherin-mediated cell adhesion vary with the state of differentiation. J. Cell. Biochem. 103: 296,310, 2008. © 2007 Wiley-Liss, Inc. [source] Vascular adhesion protein-1 (VAP-1) is overexpressed in psoriatic patientsJOURNAL OF THE EUROPEAN ACADEMY OF DERMATOLOGY & VENEREOLOGY, Issue 1 2007A Madej Abstract Background, Vascular adhesion protein (VAP)-1 is an adhesion molecule with an enzymatic activity that partakes in the migration process of lymphocytes. Objectives, The aim of this study was to investigate the expression of VAP-1 in the skin and serum of psoriatic patients. Material and methods, Seventy-one patients suffering from psoriasis aged between 23 and 89 years were included in the study. The mean psoriasis severity assessed according to the psoriasis area and severity index was 14.2 ± 9.6 points. The soluble VAP-1 serum concentration was evaluated by ELISA and VAP-1 expression in the skin (nine patients) immunohistochemically. Results, The serum concentration of soluble VAP-1 was significantly higher in psoriatic patients than in healthy controls (403.4 ± 130.8 ng/mL vs. 246.4 ± 68.0 ng/mL; P < 0.0001). No significant relationships were found between sVAP-1 concentration and studied clinical parameters, except the presence of pruritus. Mean number of VAP-1 positive vessels in psoriatic skin, both lesional (19.8 ± 1.4) and non-lesional (9.4 ± 1.4), was significantly higher than in healthy skin (5.4 ± 1.5; P < 0.005). Lesional psoriatic skin demonstrated significantly more VAP-1 positive vessels than non-lesional skin (P < 0.01). Conclusions, Significant overexpression of VAP-1 in both lesional and non-lesional psoriatic skin and higher serum level of soluble VAP-1 in psoriatic patients may indicate the role of VAP-1 in chronic inflammation occurring in psoriasis. However, because of lack of correlation between soluble VAP-1 serum levels and psoriasis severity this hypothesis needs further investigation. [source] Expression of androgen receptor coactivators in normal and cancer prostate tissues and cultured cell linesTHE PROSTATE, Issue 3 2003C. Mestayer Abstract BACKGROUND In prostate cancer cell lines, androgen receptor (AR) coactivators modulate the transcriptional activity of AR. However, very little is known about their expression in normal prostate tissue and during progression to cancer. METHODS AR and coactivators ARA54, ARA55, ARA70, and SRC1 RNA were analyzed by RT-PCR in normal and tumoral tissues of the same prostate, in prostate cell lines, and after hormonal treatments of prostate epithelial cells. RESULTS AR-coactivators were expressed in normal and tumoral tissues and in cultured prostate cells; only ARA55 expression was decreased in tumoral relative to normal tissue of all seven prostates analyzed. It was not expressed in LNCaP and DU145 cancer cells and low in PNT2 immortalized cells in which all coactivator's expression were down regulated by DHT and up regulated by E2. In addition, coactivator's expression was increased in hyperplastic relative to normal prostate fibroblasts. CONCLUSIONS ARA55 is both an AR coactivator and a focal adhesion protein (Hic-5). Its role in the progression of prostate carcinoma may therefore involve these two different functions. Its decrease in cancer tissue suggests that it plays a different role than that expected, namely, facilitate cell proliferation and therefore mobility and metastasis. Prostate 56: 192,200, 2003. © 2003 Wiley-Liss, Inc. [source] Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2005Joakim Nilsson Semicarbazide-sensitive amine oxidase (SSAO) belongs to a ubiquitous family of copper-containing amine oxidases (CuAOs). SSAO is also known as vascular adhesion protein-1 (VAP-1) and has been identified as one of the adhesion molecules involved in the leukocyte-extravasation process. The structure of a truncated soluble form of human SSAO has been solved and refined to 2.5,Å. As expected, SSAO is a homodimer with a fold typical of the CuAO family. The topaquinone (TPQ) cofactor and a copper ion characteristic of CuAOs are present in the active site, with the TPQ in the active `off-copper' conformation. The structure reveals that a leucine residue (Leu469) located adjacent to the active site could function as a gate controlling its accessibility. An RGD motif is displayed on the surface, where it could be involved in integrin binding and possibly play a role in the shedding of SSAO from the membrane. Carbohydrate moieties are observed at five of six potential N-glycosylation sites. Carbohydrates attached to Asn232 flank the active-site entrance and might influence substrate specificity. The structure of an adduct of SSAO and the irreversible inhibitor 2-hydrazinopyridine has been solved and refined to 2.9,Å resolution. Together, these structures will aid efforts to identify natural substrates, provide valuable information for the design of specific inhibitors and direct further studies. [source] Crystallization and phasing of focal adhesion protein 52 from Gallus gallusACTA CRYSTALLOGRAPHICA SECTION D, Issue 3 2004Imre Tör Focal adhesion protein 52 (FAP52) is a multidomain adaptor protein of 448 amino acids characterized as an abundant component of focal adhesions. FAP52 binds to filamin via its N-terminal ,-helical domain, suggesting a role in linking focal adhesions to the actin-based cytoskeleton. The recombinant protein was crystallized using the hanging-drop vapour-diffusion method, which yielded two crystal forms. Native data were collected from both crystal forms to 2.8 and 2.1,Å resolution, respectively. For one of the crystal forms, initial MAD phasing was successfully performed using two data sets from xenon-derivatized crystals. The derivative data sets were collected using softer X-rays of 1.5 and 1.9,Å wavelength. Preliminary structural analysis reveals the presence of a dimer in the asymmetric unit. [source] Cell adhesion in zebrafish myogenesis: Distribution of intermediate filaments, microfilaments, intracellular adhesion structures and extracellular matrixCYTOSKELETON, Issue 10 2008Manoel L. Costa Abstract To overcome the limitations of in vitro studies, we have been studying myogenesis in situ in zebrafish embryos, at a sub-cellular level. While in previous works we focused on myofibrillogenesis and some aspects of adhesion structures, here we describe in more detail cell adhesion structures and interactions among cytoskeletal components, membrane and extracellular matrix during zebrafish muscle development. We studied the intermediate filaments, and we describe the full range of desmin distribution in zebrafish development, from perinuclear to striated, until its deposition around the intersomite septa of older somites. This adhesion structure, positive for desmin and actin, has not been previously observed in myogenesis in vitro. We also show that actin is initially located in the intersomite septum region whereas it is confined to the myofibrils later on. While actin localization changes during development, the adhesion complex proteins vinculin, paxillin, talin, dystrophin, laminin and fibronectin always appear exclusively at the intersomite septa, and appear to be co-distributed, even though the extracellular proteins accumulates before the intracellular ones. Contrary to the adhesion proteins, that are continuously distributed, desmin and sarcomeric actin form triangular aggregates among the septa and the cytoskeleton. We studied the cytoskeletal linker plectin as well, and we show that it has a distribution similar to desmin and not to actin. We conclude that the in situ adhesion structures differ from their in vitro counterparts, and that the actual zebrafish embryo myogenesis is quite different than that which occurs in in vitro systems. Cell Motil. Cytoskeleton 65: 801,815, 2008. © 2008 Wiley-Liss, Inc. [source] Expression patterns of focal adhesion associated proteins in the developing retinaDEVELOPMENTAL DYNAMICS, Issue 4 2002Ming Li Abstract Adhesive interactions between integrin receptors and the extracellular matrix (ECM) are intimately involved in regulating development of a variety of tissues within the organism. In the present study, we have investigated the relationships between ,1 integrin receptors and focal adhesion associated proteins during eye development. We used specific antibodies to examine the distribution of ,1 integrin ECM receptors and the cytoplasmic focal adhesion associated proteins, talin, vinculin, and paxillin in the developing Xenopus retina. Immunoblot analysis confirmed antibody specificity and indicated that ,1 integrins, talin, vinculin, and paxillin were expressed in developing retina and in the retinal-derived Xenopus XR1 glial cell line. Triple-labeling immunocytochemistry revealed that talin, vinculin, paxillin, and phosphotyrosine proteins colocalized with ,1 integrins at focal adhesions located at the termini of F-actin filaments in XR1 cells. In the retina, these focal adhesion proteins exhibited developmentally regulated expression patterns during eye morphogenesis. In the embryonic retina, immunoreactivities for focal adhesion proteins were expressed in neuroepithelial cells, and immunoreactivity was especially strong at the interface between the optic vesicle and overlying ectoderm. At later stages, these proteins were expressed throughout all retinal layers with higher levels of expression observed in the plexiform layers, optic fiber layer, and in the region of the inner and outer limiting membrane. Strong immunoreactivities for ,1 integrin, paxillin, and phosphotyrosine were expressed in the radially oriented Müller glial cells at later stages of development. These results suggest that focal adhesion-associated proteins are involved in integrin-mediated adhesion and signaling and are likely to be essential in regulating retinal morphogenesis. © 2002 Wiley-Liss, Inc. [source] Activity of nAChRs containing ,9 subunits modulates synapse stabilization via bidirectional signaling programsDEVELOPMENTAL NEUROBIOLOGY, Issue 14 2009Vidya Murthy Abstract Although the synaptogenic program for cholinergic synapses of the neuromuscular junction is well known, little is known of the identity or dynamic expression patterns of proteins involved in non-neuromuscular nicotinic synapse development. We have previously demonstrated abnormal presynaptic terminal morphology following loss of nicotinic acetylcholine receptor (nAChR) ,9 subunit expression in adult cochleae. However, the molecular mechanisms underlying these changes have remained obscure. To better understand synapse formation and the role of cholinergic activity in the synaptogenesis of the inner ear, we exploit the nAChR ,9 subunit null mouse. In this mouse, functional acetylcholine (ACh) neurotransmission to the hair cells is completely silenced. Results demonstrate a premature, effusive innervation to the synaptic pole of the outer hair cells in ,9 null mice coinciding with delayed expression of cell adhesion proteins during the period of effusive contact. Collapse of the ectopic innervation coincides with an age-related hyperexpression pattern in the null mice. In addition, we document changes in expression of presynaptic vesicle recycling/trafficking machinery in the ,9 null mice that suggests a bidirectional information flow between the target of the neural innervation (the hair cells) and the presynaptic terminal that is modified by hair cell nAChR activity. Loss of nAChR activity may alter transcriptional activity, as CREB binding protein expression is decreased coincident with the increased expression of N-Cadherin in the adult ,9 null mice. Finally, by using mice expressing the nondesensitizing ,9 L9,T point mutant nAChR subunit, we show that increased nAChR activity drives synaptic hyperinnervation. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009 [source] Stable Non-Covalent Large Area Patterning of Inert Teflon-AF Surface: A New Approach to Multiscale Cell Guidance,ADVANCED ENGINEERING MATERIALS, Issue 6 2010Francesco Valle Micro- and nano-patterning of cell adhesion proteins is demonstrated to direct the growth of neural cells, viz. human neuroblastoma SHSY5Y, at precise positions on a strongly antifouling substrate of technolological interest. We adopt a soft-lithographic approach with oxygen plasma modified PDMS stamps to pattern human laminin on Teflon-AF films. These patterns are based on the interplay of capillary forces within the stamp and non-covalent intermolecular and surface interactions. Remarkably, they remain stable for several days upon cell culture conditions. The fabrication of substrates with adjacent antifouling and adhesion-promoting regions allows us to reach absolute spatial control in the positioning of neuroblastoma cells on the Teflon-AF films. This patterning approach of a technologically-relevant substrate can be of interest in tissue engineering and biosensing. [source] Surface Physiochemistry Affects Protein Adsorption to Stoichiometric and Silicate-Substituted Microporous Hydroxyapatites,ADVANCED ENGINEERING MATERIALS, Issue 4 2010Katharina Guth An important factor in the bioactivity and success of a bone-graft substitute is the nature of the adsorbed protein layer, which plays a vital role in orchestrating cell attachment and development through the presence of adhesion proteins such as fibronectin (Fn) and vitronectin (Vn). In this study, microporous hydroxyapatite (HA) and silicate-substituted hydroxyapatite (SA) discs with matched porosity and surface morphology are developed to mimic the topography found in commercial bone-graft substitutes in order to identify whether the introduction of microporosity and associated surface roughness eliminates the beneficial effect that silicate substitution has on protein adsorption. The introduction of microporosity does not abolish the relative enrichment of the protein layer that is adsorbed to the microporous SA discs, as opposed to HA, but appears to accelerate it. Fibronectin and Vn adsorption in a range of competitive environments at physiological temperatures confirm that the microporous SA discs have a greater affinity for Fn and Vn compared with HA, suggesting differences in the mechanisms behind the surface affinity to SA. Thus, development of a surface protein layer on SA and HA is likely to be dependent on the nature of the local protein environment and a combination of factors that are associated with the addition of silicate: the surface charge, the nature of the ionic species at the interface and the resultant hydrophilicity of the surface. Total protein adsorption is not found to be a good indicator of potential implant performance, particularly at early time points. [source] IL-10 is highly expressed in the cryptorchid cryptepididymal epithelium: a probable mechanism preventing immune responses against autoantigenic spermatozoa in the epididymal tubuleINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 3 2002E. Veräjänkorva The expression of several immunoregulatory adhesion proteins and cytokines was studied in the normal epididymis, cryptorchid cryptepididymis, the epididymis of oestrogen-treated mice and the epididymis of non-obese diabetic (NOD) mice at the protein level to see which of these immunoregulatory proteins may be involved in lymphocyte regulation in the normal or pathological epididymis and if cytokine balance in this organ is on the cellular or humoral side. The aim of the study was to characterize the immunological microenvironment of the epididymis to explain the survival of the autoantigenic spermatozoa in this site. In the 6-week-old BALB/c or NOD mouse epididymis there were some CD18 and CD44 expressing cells in the interstitial tissue. There were no differences between these strains in the expression of the studied antigens, except that some CD4 positive cells were present in the interstitial tissue of BALB/c mice. In the cryptorchid cryptepididymis CD4, CD8, CD18, CD44, CD54 and CD106 expressing cells were occasionally present in the connective tissue surrounding the epididymal tubule. In the epididymis of the oestrogen-treated mice these antigens were not expressed. In the cryptorchid cryptepididymis the epithelial cells expressed IL-10 highly and the myoid peritubular cells IL-6. The present results suggest that the epididymal epithelial IL-10 suppressing TH0, TH1 and TH2 immune responses may be involved in the protection of autoantigenic spermatozoa from immune destruction. [source] A celecoxib derivative inhibits focal adhesion signaling and induces caspase-8-dependent apoptosis in human acute myeloid leukemia cellsINTERNATIONAL JOURNAL OF CANCER, Issue 1 2008Isolda Casanova Abstract Most acute myeloid leukemias (AMLs), including those with c-Kit or FLT3 mutations, show enhanced anchorage independent growth associated with constitutive activation of focal adhesion proteins. Moreover, these alterations increase cell survival, inhibit apoptosis and are associated with poor prognosis and resistance to chemotherapy. Therefore, the induction of apoptosis by selective inhibition of focal adhesion signaling may represent a novel anti-AML therapy. Here, we have evaluated the antitumor effect and the mechanism of action of celecoxib and E7123, a non-Cox-2 inhibitor derivative, in a panel of human AML cell lines and bone marrow mononuclear cells from AML patients. Both compounds induce cell death by inhibiting focal adhesion signaling through p130Cas, FAK and c-Src, leading to caspase-8 dependent apoptosis. This mechanism of action differs from that of classical cytotoxic drugs or of other targeted therapies, and is amenable to rational drug development. Therefore, both drugs could be developed as AML therapeutics; nevertheless, E7123 shows more activity than celecoxib against AML cells, and may not present its Cox-2 dependent cardiovascular toxicity. Finally, our results support the evaluation of celecoxib in AML patients, and the preclinical evaluation of E7123, before its possible clinical testing. © 2008 Wiley-Liss, Inc. [source] Epigenetics of prostate cancer: beyond DNA methylationJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 1 2006W. A. Schulz Abstract Epigenetic mechanisms permit the stable inheritance of cellular properties without changes in DNA sequence or amount. In prostate carcinoma, epigenetic mechanisms are essential for development and progression, complementing, amplifying and diversifying genetic alterations. DNA hypermethylation affects at least 30 individual genes, while repetitive sequences including retrotransposons and selected genes become hypomethylated. Hypermethylation of several genes occurs in a coordinate manner early in carcinogenesis and can be exploited for cancer detection, whereas hypomethylation and further hypermethylation events are associated with progression. DNA methylation alterations interact with changes in chromatin proteins. Prominent alterations at this level include altered patterns of histone modification, increased expression of the EZH2 polycomb histone methyltransferase, and changes in transcriptional corepressors and coactivators. These changes may make prostate carcinoma particularly susceptible to drugs targeting chromatin and DNA modifications. They relate to crucial alterations in a network of transcription factors comprising ETS family proteins, the androgen receptor, NKX3.1, KLF, and HOXB13 homeobox proteins. This network controls differentiation and proliferation of prostate epithelial cells integrating signals from hormones, growth factors and cell adhesion proteins that are likewise distorted in prostate cancer. As a consequence, prostate carcinoma cells appear to be locked into an aberrant state, characterized by continued proliferation of largely differentiated cells. Accordingly, stem cell characteristics of prostate cancer cells appear to be secondarily acquired. The aberrant differentiation state of prostate carcinoma cells also results in distorted mutual interactions between epithelial and stromal cells in the tumor that promote tumor growth, invasion, and metastasis. [source] Loss of E-cadherin mediated cell,cell adhesion as an early trigger of apoptosis induced by photodynamic treatmentJOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2005Sergio Galaz Photodynamic treatment with different photosensitizers (PSs) can result in the specific induction of apoptosis in many cell types. It is commonly accepted that this apoptotic response depends on the mitochondrial accumulation of the PS. Accumulation in other cellular organelles, such as lysosomes or the Golgi complex, and subsequent photodamage resulting in an apoptotic process has been also described. However, the role played by cell adhesion in apoptosis induced in epithelial cells after photodynamic treatment is not well characterized. Here, we have used a murine keratinocyte line, showing a strong dependence on E-cadherin for cell,cell adhesion and survival, to analyze the relevance of this adhesion complex in the context of zinc(II)-phthalocyanine (ZnPc) photodynamic treatment. We report that under apoptotic conditions, ZnPc phototreatment induces a rapid disorganization of the E-cadherin mediated cell,cell adhesion, which largely preceded both the detachment of cells from the substrate, via ,-1 integrins and the induction of apoptotic mitochondrial markers. Therefore, the alteration in E-cadherin, ,- and ,-catenins adhesion proteins preceded the release of cytochrome c (cyt c) from mitochondria to the cytosol and the activation of caspase 3. In addition, blocking E-cadherin function with a specific antibody (Decma-1) induced apoptosis in this cell system. These results strongly suggest that the E-cadherin adhesion complex could be the primary target of ZnPc phototreatment, and that loss of E-cadherin mediated cell adhesion after early photodamage triggers an apoptotic response. © 2005 Wiley-Liss, Inc. [source] Effects of Ethanol and Transforming Growth Factor , (TGF,) on Neuronal Proliferation and nCAM ExpressionALCOHOLISM, Issue 8 2002Michael W. Miller Background Developmental events targeted by ethanol are cell proliferation, neuronal migration, and neurite outgrowth; the latter processes being mediated by neural cell adhesion molecule (nCAM). TGF,1 affects all three of these events. Therefore, the effects of ethanol on transforming growth factor (TGF) ,1 mediated activities in neocortical neurons in vitro were examined. Methods Primary cultures of cortical neurons were obtained from 16-day-old fetuses and were treated with TGF,1 (0 or 10 ng/ml) and ethanol (0 or 400 mg/dl) for 48 hr. The effects of these substances on cell numbers, [3H]thymidine incorporation, and the expression of nCAM were determined. Results Both cell growth (the change in cell numbers over time) and cell proliferation were inhibited by TGF,1 and ethanol. The action of these two anti-mitogenic factors was additive. In contrast, TGF,1 also promoted the expression of three isoforms of nCAM. Likewise, ethanol also up-regulated nCAM expression. On the other hand, ethanol blocked TGF,1-mediated nCAM expression, particularly of the 120 and 180 kDa isoforms. Conclusions TGF, ligands inhibit neuronal proliferation and stimulate the expression of cell adhesion proteins that promote the movement of postmitotic neurons and process outgrowth. Ethanol alters these phenomena as well. Thus, in neurons, as in astrocytes, TGF,1 and ethanol may interact. [source] Glycoproteomics and glycomics investigation of membrane N -glycosylproteins from human colon carcinoma cellsPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2008Anne-Sophie Vercoutter-Edouart Dr. Abstract Aberrant glycosylation of proteins is known to profoundly affect cellular adhesion or motility of tumoral cells. In this study, we used HT-29 human colon epithelial cancer cells as a cellular model of cancer progression, as they can either proliferate or differentiate into enterocyte phenotype. A glycoproteomic approach based on Con A lectin-affinity chromatography, SDS-PAGE and MS analysis, allowed the identification of membrane N -glycoproteins from Triton X-100-solubilized proteins from membrane preparation. Among them, 65% were membrane proteins, and 45% were known to be N -glycosylated, such as , chains integrin and dipeptidyl isomerase IV. By lectin-blot analysis, significant changes of ,-2,3- and ,-2,6-sialylation of membrane glycoproteins were observed between proliferating and differentiated HT-29 cells. From these results, nano-LC-MS/MS analysis of the tryptic digests of the corresponding bands was performed and led to the identification of several transmembrane glycoproteins, like members of the solute carrier family and adhesion proteins. Finally, we compared N -glycans profiles and monosaccharide composition of proliferating and enterocyte-like HT-29 cells using MALDI-MS and GC-MS analyses of permethylated derivatives. This glycomic approach allowed to underscore significant changes in N -glycans structure, in particular the expression of atypical N -acetylglucosamine (GlcNAc)-ended N -glycans in enterocyte-like HT-29 cells. [source] Attachment of Osteocyte Cell Processes to the Bone MatrixTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 3 2009L.M. McNamara Abstract In order for osteocytes to perceive mechanical information and regulate bone remodeling accordingly they must be anchored to their extracellular matrix (ECM). To date the nature of this attachment is not understood. Osteocytes are embedded in mineralized bone matrix, but maintain a pericellular space (50,80 nm) to facilitate fluid flow and transport of metabolites. This provides a spatial limit for their attachment to bone matrix. Integrins are cell adhesion proteins that may play a role in osteocyte attachment. However, integrin attachments require proximity between the ECM, cell membrane, and cytoskeleton, which conflicts with the osteocytes requirement for a pericellular fluid space. In this study, we hypothesize that the challenge for osteocytes to attach to surrounding bone matrix, while also maintaining fluid-filled pericellular space, requires different "engineering" solutions than in other tissues that are not similarly constrained. Using novel rapid fixation techniques, to improve cell membrane and matrix protein preservation, and transmission electron microscopy, the attachment of osteocyte processes to their canalicular boundaries are quantified. We report that the canalicular wall is wave-like with periodic conical protrusions extending into the pericellular space. By immunohistochemistry we identify that the integrin ,v,3 may play a role in attachment at these complexes; a punctate pattern of staining of ,3 along the canalicular wall was consistent with observations of periodic protrusions extending into the pericellular space. We propose that during osteocyte attachment the pericellular space is periodically interrupted by underlying collagen fibrils that attach directly to the cell process membrane via integrin-attachments. Anat Rec, 292:355,363, 2009. © 2009 Wiley-Liss, Inc. [source] Tumor volume of colon carcinoma is related to the invasive pattern but not to the expression of cell adhesion proteinsAPMIS, Issue 3 2009VICTORIA HAHN-STRÖMBERG Tumor volume increases during growth and due to tumor progression various mutations appear that may cause phenotypic changes. The invasive pattern may thus be affected resulting in a more disorganized growth. This phenomenon might be due to mutations in the genome of the adhesion proteins, which are responsible for the structural integrity of epithelial tissue. Tumor volume was assessed in whole mount sections of 33 colon carcinomas using Cavalieri's principle. Images from the entire invasive border were captured and used for calculating the irregularity of the border (Complexity Index). The expression of the adhesion proteins E-cadherin, ,-catenin, Claudin 2 and Occludin was assessed after immunohistochemical staining of two randomly selected areas of the invasive front of the tumor. Statistical significance for differences in volume was obtained for tumor Complexity Index, tumor stage (pT) and lymph node status (pN). Expression of adhesion proteins was significantly perturbed in the tumors compared with normal mucosa but only infrequently correlated to tumor differentiation or invasive pattern. The results show that when tumor volume increases the invasive pattern becomes more irregular which is compatible with tumor progression. A direct contribution of adhesion protein derangement to this process appears to be insignificant. [source] Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin miceAUTISM RESEARCH, Issue 3 2008Kathryn K. Chadman Abstract Neuroligin-3 is a member of the class of cell adhesion proteins that mediate synapse development and have been implicated in autism. Mice with the human R451C mutation (NL3), identical to the point mutation found in two brothers with autism spectrum disorders, were generated and phenotyped in multiple behavioral assays with face validity to the diagnostic symptoms of autism. No differences between NL3 and their wildtype (WT) littermate controls were detected on measures of juvenile reciprocal social interaction, adult social approach, cognitive abilities, and resistance to change in a spatial habit, findings which were replicated in several cohorts of males and females. Physical and procedural abilities were similar across genotypes on measures of general health, sensory abilities, sensorimotor gating, motor functions, and anxiety-related traits. Minor developmental differences were detected between NL3 and WT, including slightly different rates of somatic growth, slower righting reflexes at postnatal days 2,6, faster homing reflexes in females, and less vocalizations on postnatal day 8 in males. Significant differences in NL3 adults included somewhat longer latencies to fall from the rotarod, less vertical activity in the open field, and less acoustic startle to high decibel tones. The humanized R451C mutation in mice did not result in apparent autism-like phenotypes, but produced detectable functional consequences that may be interpreted in terms of physical development and/or reduced sensitivity to stimuli. [source] Adhesion of pancreatic beta cells to biopolymer filmsBIOPOLYMERS, Issue 8 2009S. Janette Williams Abstract Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 ,m) as compared with large islets (>125 ,m), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 676,685, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Geranylgeranylacetone inhibits lysophosphatidic acid-induced invasion of human ovarian carcinoma cells in vitroCANCER, Issue 7 2005Kae Hashimoto M.D. Abstract BACKGROUND Lysophosphatidic acid (LPA) induced a dose-dependent increase of cancer cell invasion by promoting Rho/Rho-associated kinase signaling. Prenylation of Rho is essential for regulating cell growth, motility, and invasion. Geranylgeranylacetone (GGA), an isoprenoid compound, is used clinically as an antiulcer drug. Recent findings suggested that GGA might inhibit the small GTPase activation by suppressing prenylation. The authors hypothesized that the anticancer effects of GGA result from the inhibition of Rho activation. METHODS The authors examined the effect of GGA using an in vitro invasion assay in human ovarian carcinoma cells, and analyzed the mechanism of the GGA effect on Rho activation, stress fiber formation and focal adhesion assembly, which are essential processes for cell invasion. RESULTS The induction of ovarian carcinoma cell invasion by LPA was inhibited by the addition of GGA in a dose-dependent manner. Treatment of cancer cells with GGA resulted in inactivation of Rho, changes in cell morphology, loss of stress fiber formation and focal adhesion assembly, and the suppression of tyrosine phosphorylation of focal adhesion proteins. The effect of GGA on cancer cells was partially prevented by the addition of geranylgeraniol, which is an intermediate of geranylgeranyl pyrophosphate and compensates geranylgeranylation of Rho. CONCLUSIONS The inhibition of LPA-induced invasion by GGA was, at least in part, derived from suppressed Rho activation by preventing geranylgeranylation. Cancer 2005. © 2005 American Cancer Society. [source] Plasmodium falciparum: binding studies of peptide derived from the sporozoite surface protein 2 to Hep G2 cellsCHEMICAL BIOLOGY & DRUG DESIGN, Issue 4 2001R. López Abstract:Plasmodium falciparum sporozoite surface protein 2 (Pf SSP2), also called thrombospondin related anonymous protein (TRAP), is involved in the process of sporozoite invasion of hepatocytes. Pf SSP2/TRAP possesses two different adhesion domains sharing sequences and structural homology with von Willebrand factor A-domains and human repeat I thrombospondin (TSP). Pf SSP2/TRAP has also been implicated in sporozoite mobility and in mosquito salivary gland invasion processes. We tested 15-mer long synthetic peptides having five overlapping residues covering the complete protein Pf SSP2 sequence in binding assays to Hep G2 cells. In these 57 peptides, 21 high-activity binding peptides (HABPs) were identified; five were in the adhesion domains already described and 16 were in two regions toward the protein's carboxy and middle terminal part. Six HABPs showed conserved amino acid sequences: 3243 (21FLVNGRDVQNNIVDE35), 3279 (201FLVGCHPSDGKCNLY215), 3287 (241TASCGVWDEWSPCSV255), 3289 (251SPCSVTCGKGTRSRK265), 3327 (441ERKQSDPQSQDNNGNY455) and 3329 (451DNNGNRHVPNSEDREY465). The HABPs show saturable binding and dissociation constants between 140 and 900 nm with 40,000,855 000 binding sites per cell. The 3279 (201FLVGCHPSDGKCNLY215), 3323 (421NDKSDRYIPYSPLSP435) and 3331 (461SEDRETRPHGRNNENY475) HABPs have B epitopes in their sequences; these have previously been recognized by antibodies partially inhibiting hepatocyte invasion and development of the hepatic state. The 3287 (241TASCGVWDEWSPCSV255) and 3289 (251SPCSVTCGKGTRSRK265) HABPs share common sequences with the Pf SSP2/TRAP region II plus, which is present in a great number of adhesion proteins. Based on this information, six new peptides covering the high binding regions identified previously were synthesized and, using a competition assay, the amino acid involved in the binding were determined. [source] Expression of Three Gene Families Encoding Cell,Cell Communication Molecules in the Prepubertal Nonhuman Primate HypothalamusJOURNAL OF NEUROENDOCRINOLOGY, Issue 4 2005A. E. Mungenast Abstract Transsynaptic and glial,neuronal communication are important components of the mechanism underlying the pubertal activation of luteinizing hormone-releasing hormone (LHRH) secretion. The molecules required for the architectural organization of these cell,cell interactions have not been identified. We now show that the hypothalamus of the prepubertal female rhesus monkey expresses a multiplicity of genes encoding three families of adhesion/signalling proteins involved in the structural definition of both neurone-to-neurone and bi-directional neurone,glia communication. These include the neurexin/neuroligin (NRX/NRL) and protocadherin-, (PCDH,) families of synaptic specifiers/adhesion molecules, and key components of the contactin-dependent neuronal,glial adhesiveness complex, including contactin/F3 itself, the contactin-associated protein-1 (CASPR1), and the glial receptor protein tyrosine phosphatase ,. Prominently expressed among members of the NRX family is the neurexin isoform involved in the specification of glutamatergic synapses. Although NRXs, PCDH,s and CASPR1 transcripts are mostly detected in neurones, the topography of expression appears different. NRX1 mRNA-containing neurones are scattered throughout the hypothalamus, PCDH, mRNA transcripts appear more abundant in neurones of the arcuate nucleus and periventricular region, and neurones positive for CASPR1 mRNA exhibit a particularly striking distribution pattern that delineates the hypothalamus. Examination of LHRH neurones, using the LHRH-secreting cell line GT1-7, showed that these cells contain transcripts encoding NRXs and one of their ligands (NRL1), at least one PCDH, (CNR-8/PCDH,10), and the CASPR1/contactin complex. The results indicate that the prepubertal female monkey hypothalamus contains a plethora of adhesion/signalling molecules with different but complementary functions, and that an LHRH neuronal cell line expresses key components of this structural complex. The presence of such cell,cell communication machinery in the neuroendocrine brain suggests an integrated participation of their individual components in the central control of female sexual development. [source] |