Home About us Contact | |||
Adenosine Transport (adenosine + transport)
Selected AbstractsInsulin restores glucose inhibition of adenosine transport by increasing the expression and activity of the equilibrative nucleoside transporter 2 in human umbilical vein endotheliumJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2006Gonzalo Muñoz L -Arginine transport and nitric oxide (NO) synthesis (L -arginine/NO pathway) are stimulated by insulin, adenosine or elevated extracellular D -glucose in human umbilical vein endothelial cells (HUVEC). Adenosine uptake via the human equilibrative nucleoside transporters 1 (hENT1) and 2 (hENT2) has been proposed as a mechanism regulating adenosine plasma concentration, and therefore its vascular effects in human umbilical veins. Thus, altered expression and/or activity of hENT1 or hENT2 could lead to abnormal physiological plasma adenosine level. We have characterized insulin effect on adenosine transport in HUVEC cultured in normal (5 mM) or high (25 mM) D -glucose. Insulin (1 nM) increased overall adenosine transport associated with higher hENT2-, but lower hENT1-mediated transport in normal D -glucose. Insulin increased hENT2 protein abundance in normal or high D -glucose, but reduced hENT1 protein abundance in normal D -glucose. Insulin did not alter the reduced hENT1 protein abundance, but blocked the reduced hENT1 and hENT2 mRNA expression induced by high D -glucose. Insulin effect on hENT1 mRNA expression in normal D -glucose was blocked by NG -nitro- L -arginine methyl ester (L-NAME, NO synthase inhibitor) and mimicked by S -nitroso- N -acetyl- L,D -penicillamine (SNAP, NO donor). L-NAME did not block insulin effect on hENT2 expression. In conclusion, insulin stimulation of overall adenosine transport results from increased hENT2 expression and activity via a NO-independent mechanism. These findings could be important in hyperglycemia-associated pathological pregnancies, such as gestational diabetes, where plasma adenosine removal by the endothelium is reduced, a condition that could alter the blood flow from the placenta to the fetus affecting fetus growth and development. J. Cell. Physiol. 209: 826,835, 2006. © 2006 Wiley-Liss, Inc. [source] Ethanol Blocks Adenosine Uptake via Inhibiting the Nucleoside Transport System in Bronchial Epithelial CellsALCOHOLISM, Issue 5 2009Diane S. Allen-Gipson Background:, Adenosine uptake into cells by nucleoside transporters plays a significant role in governing extracellular adenosine concentration. Extracellular adenosine is an important signaling molecule that modulates many cellular functions via 4 G-protein-coupled receptor subtypes (A1, A2A, A2B, and A3). Previously, we demonstrated that adenosine is critical in maintaining airway homeostasis and airway repair and that airway host defenses are impaired by alcohol. Taken together, we hypothesized that ethanol impairs adenosine uptake via the nucleoside transport system. Methods:, To examine ethanol-induced alteration on adenosine transport, we used a human bronchial epithelial cell line (BEAS-2B). Cells were preincubated for 10 minutes in the presence and absence of varying concentrations of ethanol (EtOH). In addition, some cells were pretreated with S-(4-Nitrobenzyl)-6-thioinosine (100 ,M: NBT), a potent adenosine uptake inhibitor. Uptake was then determined by addition of [3H]-adenosine at various time intervals. Results:, Increasing EtOH concentrations resulted in increasing inhibition of adenosine uptake when measured at 1 minute. Cells pretreated with NBT effectively blocked adenosine uptake. In addition, short-term EtOH revealed increased extracellular adenosine concentration. Conversely, adenosine transport became desensitized in cells exposed to EtOH (100 mM) for 24 hours. To determine the mechanism of EtOH-induced desensitization of adenosine transport, cAMP activity was assessed in response to EtOH. Short-term EtOH exposure (10 minutes) had little or no effect on adenosine-mediated cAMP activation, whereas long-term EtOH exposure (24 hours) blocked adenosine-mediated cAMP activation. Western blot analysis of lysates from unstimulated BEAS-2B cells detected a single 55 kDa band indicating the presence of hENT1 and hENT2, respectively. Real-time RT-PCR of RNA from BEAS-2B revealed transcriptional expression of ENT1 and ENT2. Conclusions:, Collectively, these data reveal that acute exposure of cells to EtOH inhibits adenosine uptake via a nucleoside transporter, and chronic exposure of cells to EtOH desensitizes the adenosine transporter to these inhibitory effects of ethanol. Furthermore, our data suggest that inhibition of adenosine uptake by EtOH leads to an increased extracellular adenosine accumulation, influencing the effect of adenosine at the epithelial cell surface, which may alter airway homeostasis. [source] Adenosine modulates cell growth in baby hamster kidney (BHK) cellsBIOFACTORS, Issue 4 2000Rashmi A. Mittal Abstract Adenosine is known to modulate cell growth in a variety of mammalian cells either via the activation of receptors or through metabolism. We investigated the effect of adenosine on Baby Hamster Kidney (BHK) cell growth and attempted to determine its mechanism of modulation. In wild-type BHK cells, adenosine evoked a biphasic response in which a low concentration of adenosine (1± 150;5 ,M) produced an inhibition of colony formation but at higher concentrations (up to 50 ,M) this inhibition was progressively reversed. However, no biphasic response was observed in an ± 147;adenosine kinase± 148; deficient BHK mutant, ± 147;5a± 148;, which suggests that adenosine kinase plays an important role in the modulation of growth response to adenosine. Adenosine receptors did not appear to have a role in regulating cell growth of BHK cells. Specific A1 and A2 receptor antagonists were unable to reverse the effect of adenosine on cell growth. Even though a specific A3 adenosine receptor antagonist MRS-1220 partly reversed the inhibition in colony formation at 1 ,M adenosine, it also affected the transport of adenosine. Thus adenosine transport and metabolism appears to play the major role in this modulation of cell growth as 5,-amino-5,-deoxyadenosine, an adenosine kinase inhibitor, reversed the inhibition of cell growth observed at 1 ,M adenosine. These results, taken together, would suggest that adenosine modulates cell growth in BHK mainly through its transport and metabolism to adenine nucleotides. [source] Extracellular ATP and adenosine induce cell apoptosis of human hepatoma Li-7A cells via the A3 adenosine receptorBRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2003Long T Wen Extracellular ATP is a potent signaling molecule that modulates a myriad of cellular functions through the activation of P2 purinergic receptors and is cytotoxic to a variety of cells at higher concentrations. The mechanism of ATP-elicited cytotoxicity is not fully understood. In this study, we investigated the effect of extracellular ATP on the human hepatoma Li-7A cells. We observed a time- and dose-dependent growth inhibition of Li-7A cells by ATP, which is accompanied by an increase in the active form of caspase-3 as well as increased cleavage of its substrate, poly (ADP-ribose) polymerase. The cytotoxic effect of extracellular ATP was not mediated by the P2X7 receptor, since (1) the effect was not abolished by the P2X7 receptor antagonists oxidized ATP and KN-62, and (2) extracellular ADP, AMP, and adenosine were also cytotoxic. We found that ATP and ADP were degraded to adenosine by Li-7A cells and that treatment of Li-7A cells by adenosine resulted in growth inhibition and caspase-3 activation, indicating that adenosine is the apoptotic agent. Using adenosine receptor agonists and antagonists, as well as inhibitors of adenosine transport and deamination, we showed that the cytotoxic effect of adenosine is specifically mediated by the A3 receptor even though transcripts of A1, A2A, A2B, and a splice variant of the P2X7 receptors were detected in Li-7A cells by RT,PCR. Cytotoxicity caused by exogenous ATP and adenosine was completely abolished by the caspase-3 inhibitor Z-DEVD-FMK, demonstrating the central role of caspase-3 in apoptosis of Li-7A cells. British Journal of Pharmacology (2003) 140, 1009,1018. doi:10.1038/sj.bjp.0705523 [source] |