Adenosine Receptor Subtypes (adenosine + receptor_subtype)

Distribution by Scientific Domains


Selected Abstracts


Assessment and Characterization of Purinergic Contractions and Relaxations in the Rat Urinary Bladder

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 1 2010
Patrik Aronsson
ATP elicited a transient bladder contraction followed by a sustained relaxation and ADP, UDP and UTP generated predominantly potent relaxations (relaxatory potencies: ADP = ATP > UDP = UTP). The ATP contractions were desensitized with the P2X1/3 purinoceptor agonist/desensitizer ,,,-meATP and reduced by the P2 purinoceptor antagonist PPADS but unaffected by the P2 purinoceptor antagonist suramin. Electrical field stimulation (1,60 Hz) evoked frequency-dependent bladder contractions that were decreased by incubation with ,,,-meATP but not further decreased by PPADS. Suramin antagonized relaxations generated by UDP but not those by ADP, ATP or UTP. PPADS antagonized and tended to antagonize UTP and UDP relaxations, respectively, but did neither affect ADP nor ATP relaxations. ADP relaxations were insensitive to the P2Y1 purinoceptor antagonist MRS 2179 and the ATP-sensitive potassium channel antagonist glibenclamide. The ATP relaxations were inhibited by the P1 purinoceptor antagonist 8-p-sulfophenyltheophylline but unaffected by the A2A adenosine receptor antagonist 8-(3-chlorostyryl)caffeine and glibenclamide. Adenosine evoked relaxations that were antagonized by the A2B adenosine receptor antagonist PSB 1115. Thus, in the rat urinary bladder purinergic contractions are elicited predominantly by stimulation of the P2X1 purinoceptors, while UDP/UTP-sensitive P2Y purinoceptor(s) and P1 purinoceptors of the A2B adenosine receptor subtype are involved in bladder relaxation. [source]


New insights into adenosine receptor modulation of myocardial ischemia-reperfusion injury

DRUG DEVELOPMENT RESEARCH, Issue 1-2 2001
Robert D. Lasley
Abstract The cardioprotective effects of adenosine in numerous experimental models have been well described and there is evidence that adenosine is beneficial in the clinical setting. However, the exact mechanism by which adenosine exerts its beneficial effects in reversibly and irreversibly injured myocardium has not been determined. In addition, with the exception of the A1 receptor, there is not universal agreement on the involvement of adenosine receptor subtypes. This review summarizes recent findings in our laboratory on the role of the A3 and A2a receptors in adenosine cardioprotection and compartmentation of cardiomyocyte adenosine receptor signaling. Drug Dev. Res. 52:357,365, 2001. © 2001 Wiley-Liss, Inc. [source]


Adenosine receptors: promising targets for the development of novel therapeutics and diagnostics for asthma

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2006
Cristina Russo
Abstract Interest in the role of adenosine in asthma has escalated considerably since the early observation of its powerful bronchoconstrictor effects in asthmatic but not normal airways. A growing body of evidence has emerged in support of a proinflammatory and immunomodulatory role for the purine nucleoside adenosine in the pathogenic mechanisms of chronic inflammatory disorders of the airways such as asthma. The fact that adenosine enhances mast cell allergen-dependent activation, that elevated levels of adenosine are present in chronically inflamed airways, and that adenosine given by inhalation cause dose-dependent bronchoconstriction in subjects with asthma emphasizes the importance of adenosine in the initiation, persistence and progression of these common inflammatory disorders of the airways. These distinctive features of adenosine have been recently exploited in the clinical and research setting to identify innovative diagnostic applications for asthma. In addition, because adenosine exerts its multiple biological activities by interacting with four adenosine receptor subtypes, selective activation or blockade of these receptors may lead to the development of novel therapies for asthma. [source]


An update on the mechanisms of the psychostimulant effects of caffeine

JOURNAL OF NEUROCHEMISTRY, Issue 4 2008
Sergi Ferré
Abstract There has been a long debate about the predominant involvement of the different adenosine receptor subtypes and the preferential role of pre- versus post-synaptic mechanisms in the psychostimulant effects of the adenosine receptor antagonist caffeine. Both striatal A1 and A2A receptors are involved in the motor-activating and probably reinforcing effects of caffeine, although they play a different role under conditions of acute or chronic caffeine administration. The present review emphasizes the key integrative role of adenosine and adenosine receptor heteromers in the computation of information at the level of the striatal spine module (SSM). This local module is mostly represented by the dendritic spine of the medium spiny neuron with its glutamatergic and dopaminergic synapses and astroglial processes that wrap the glutamatergic synapse. In the SSM, adenosine acts both pre- and post-synaptically through multiple mechanisms, which depend on heteromerization of A1 and A2A receptors among themselves and with D1 and D2 receptors, respectively. A critical aspect of the mechanisms of the psychostimulant effects of caffeine is its ability to release the pre- and post-synaptic brakes that adenosine imposes on dopaminergic neurotransmission by acting on different adenosine receptor heteromers localized in different elements of the SSM. [source]


Possible therapeutic benefits of adenosine-potentiating drugs in reducing age-related degenerative disease in dogs and cats

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2003
R. J. Scaramuzzi
Adenosine is a ubiquitous, biologically important molecule that is a precursor of other biologically active molecules. It also is a component of some co-factors and has distinct physiological actions in its own right. Levels are maintained by synthesis from dietary precursors and re-cycling. The daily turnover of adenosine is very high. Adenosine can act either as a hormone by binding to adenosine receptors, four adenosine receptor subtypes have been identified, and as an intracellular modulator, after transport into the cell by membrane transporter proteins. One of the principal intracellular actions of adenosine is inhibition of the enzyme phosphodiesterase. Extracellular adenosine also has specific neuromodulatory actions on dopamine and glutamate. Selective and nonselective agonists and antagonists of adenosine are available. The tasks of developing, evaluating and exploiting the therapeutic potential of these compounds is still in its infancy. Adenosine has actions in the central nervous system (CNS), heart and vascular system, skeletal muscle and the immune system and the presence of receptors suggests potential actions in the gonads and other organs. Adenosine agonists improve tissue perfusion through actions on vascular smooth muscle and erythrocyte fluidity and they can be used to improve the quality of life in aged dogs. This article reviews the therapeutic potential of adenosine-potentiating drugs in the treatment of age-related conditions in companion animals, some of which may be exacerbated by castration or spaying at an early age. [source]


Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: The possible contribution of 86Rb+ efflux and 45Ca2+ uptake

CELL BIOCHEMISTRY AND FUNCTION, Issue 8 2008
M. Töpfer
Abstract Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+ - and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1 -receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5,- N -ethylcarboxyamidoadenosine) at high concentration (10,µM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10,nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6 -cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50,µM) can be increased by 10,µM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1 -receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues. Copyright © 2008 John Wiley & Sons, Ltd. [source]