Home About us Contact | |||
Adeno-associated Virus (adeno-associated + virus)
Kinds of Adeno-associated Virus Selected AbstractsIntramuscular AAV delivery of NT-3 alters synaptic transmission to motoneurons in adult ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2010Jeffrey C. Petruska Abstract We examined whether elevating levels of neurotrophin-3 (NT-3) in the spinal cord and dorsal root ganglion (DRG) would alter connections made by muscle spindle afferent fibers on motoneurons. Adeno-associated virus (AAV) serotypes AAV1, AAV2 and AAV5, selected for their tropism profile, were engineered with the NT-3 gene and administered to the medial gastrocnemius muscle in adult rats. ELISA studies in muscle, DRG and spinal cord revealed that NT-3 concentration in all tissues peaked about 3 months after a single viral injection; after 6 months NT-3 concentration returned to normal values. Intracellular recording in triceps surae motoneurons revealed complex electrophysiological changes. Moderate elevation in cord NT-3 resulted in diminished segmental excitatory postsynaptic potential (EPSP) amplitude, perhaps as a result of the observed decrease in motoneuron input resistance. With further elevation in NT-3 expression, the decline in EPSP amplitude was reversed, indicating that NT-3 at higher concentration could increase EPSP amplitude. No correlation was observed between EPSP amplitude and NT-3 concentration in the DRG. Treatment with control viruses could elevate NT-3 levels minimally resulting in measurable electrophysiological effects, perhaps as a result of inflammation associated with injection. EPSPs elicited by stimulation of the ventrolateral funiculus underwent a consistent decline in amplitude independent of NT-3 level. These novel correlations between modified NT-3 expression and single-cell electrophysiological parameters indicate that intramuscular administration of AAV(NT-3) can exert long-lasting effects on synaptic transmission to motoneurons. This approach to neurotrophin delivery could be useful in modifying spinal function after injury. [source] Parvovirus-mediated gene transfer for the haemophiliasHAEMOPHILIA, Issue 2002C. E. Walsh Summary. ,Gene therapy may revolutionize the treatment of haemophilia. Effective gene therapy requires sustained therapeutic levels of factors IX (FIX) and VIII. Adeno-associated virus (AAV) is a member of the parvovirus family, is a nonpathogenic virus with a broad host cell range, and does not provoke a significant immune response upon infection. These favourable characteristics make AAV a suitable gene transfer vector for factor deficient patients. A new understanding of AAV biology coupled with novel AAV vector designs suggest that the goal of effective gene transfer is within reach. We review here recent advances in AAV vectors used for gene transfer of the haemophilias. [source] Recent developments in adeno-associated virus vector technologyTHE JOURNAL OF GENE MEDICINE, Issue 7 2008Hildegard Büning Abstract Adeno-associated virus (AAV), a single-stranded DNA parvovirus, is emerging as one of the leading gene therapy vectors owing to its nonpathogenicity and low immunogenicity, stability and the potential to integrate site-specifically without known side-effects. A portfolio of recombinant AAV vector types has been developed with the aim of optimizing efficiency, specificity and thereby also the safety of in vitro and in vivo gene transfer. More and more information is now becoming available about the mechanism of AAV/host cell interaction improving the efficacy of recombinant AAV vector (rAAV) mediated gene delivery. This review summarizes the current knowledge of the infectious biology of AAV, provides an overview of the latest developments in the field of AAV vector technology and discusses remaining challenges. Copyright © 2008 John Wiley & Sons, Ltd. [source] Production, purification and preliminary X-ray crystallographic studies of adeno-associated virus serotype 9ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 7 2009Matthew Mitchell Adeno-associated virus (AAV) serotype 9, which is under development for gene-delivery applications, shows significantly enhanced capsid-associated transduction efficiency in muscle compared with other AAV serotypes. With the aim of characterizing the structural determinants of this property, the purification, crystallization and preliminary X-ray crystallographic analyses of the AAV9 viral capsid are reported. The crystals diffracted X-rays to 2.8,Å resolution using synchrotron radiation and belonged to the trigonal space group P32, with unit-cell parameters a = b = 251.0, c = 640.0,Å. There are three complete viral capsids in the crystal unit cell. The orientation and position of the asymmetric unit capsid have been determined by molecular-replacement methods and structure determination is in progress. [source] Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathologyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2010Ayse Ulusoy Abstract Lewy bodies, which are a pathological hallmark of Parkinson's disease, contain insoluble polymers of alpha-synuclein (,syn). Among the different modifications that can promote the formation of toxic ,syn species, C-terminal truncation is among the most abundant alterations in patients with Parkinson's disease. In vitro, C-terminal truncated ,syn aggregates faster and sub-stoichiometric amounts of C-terminal truncated ,syn promote aggregation of the full-length ,syn (,synFL) and induce neuronal toxicity. To address in vivo the putative stimulation of ,syn-induced pathology by the presence of truncated ,syn, we used recombinant adeno-associated virus to express either ,synFL or a C-terminal truncated ,syn (1-110) in rats. We adjusted the recombinant adeno-associated virus vector concentrations so that either protein alone led to only mild to moderate axonal pathology in the terminals of nigrostriatal dopamine neurons without frank cell loss. When these two forms of ,syn were co-expressed at these pre-determined levels, it resulted in a more aggressive pathology in fiber terminals as well as dopaminergic cell loss in the substantia nigra. Using an antibody that did not detect the C-terminal truncated ,syn (1-110) but only ,synFL, we demonstrated that the co-expressed truncated protein promoted the progressive accumulation of ,synFL and formation of larger pathological accumulations. Moreover, in the co-expression group, three of the eight animals showed apomorphine-induced turning, suggesting prominent post-synaptic alterations due to impairments in the dopamine release, whereas the mild pathology induced by either form alone did not cause motor abnormalities. Taken together these data suggest that C-terminal truncated ,syn can interact with and exacerbate the formation of pathological accumulations containing ,synFL in vivo. [source] Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivoEXPERIMENTAL PHYSIOLOGY, Issue 1 2005Z. Shevtsova The brain parenchyma consists of several different cell types, such as neurones, astrocytes, microglia, oligodendroglia and epithelial cells, which are morphologically and functionally intermingled in highly complex three-dimensional structures. These different cell types are also present in cultures of brain cells prepared to serve as model systems of CNS physiology. Gene transfer, either in a therapeutic attempt or in basic research, is a fascinating and promising tool to manipulate both the complex physiology of the brain and that of isolated neuronal cells. Viral vectors based on the parvovirus, adeno-associated virus (AAV), have emerged as powerful transgene delivery vehicles. Here we describe highly efficient targeting of AAV vectors to either neurones or astrocytes in cultured primary brain cell cultures. We also show that transcriptional targeting can be achieved by the use of small promoters, significantly boosting the transgene capacity of the recombinant viral genome. However, we also demonstrate that successful targeting of a vector in vitro does not necessarily imply that the same targeting works in the adult brain. Cross-packaging the AAV-2 genome in capsids of other serotypes adds additional benefits to this vector system. In the brain, the serotype-5 capsid allows for drastically increased spread of the recombinant vector as compared to the serotype-2 capsid. Finally, we emphasize the optimal targeting approach, in which the natural tropism of a vector for a specific cell type is employed. Taken together, these data demonstrate the flexibility which AAV-based vector systems offer in physiological research. [source] Chronic ethanol increases adeno-associated viral transgene expression in rat liver via oxidant and NF,B-dependent mechanismsHEPATOLOGY, Issue 5 2000Michael D. Wheeler Recombinant adeno-associated virus (rAAV) transduction is limited in vivo, yet can be enhanced by hydroxyurea, ultraviolet-irradiation, or adenovirus coinfection, possibly via mechanisms involving stress in the host cell. Because chronic ethanol induces oxidative stress, it was hypothesized that chronic ethanol would increase rAAV transduction in vivo. To test this hypothesis, rAAV encoding ,-galactosidase was given to Wistar rats that later received either ethanol diet or high-fat control diet via an enteral-feeding protocol for 3 weeks. Expression and activity of ,-galactosidase in the liver were increased nearly 5-fold by ethanol. The increase in transgene expression was inhibited by antioxidant diphenylene iodonium (DPI), which is consistent with the hypothesis that ethanol causes an increase in rAAV transduction via oxidative stress. Ethanol increased DNA synthesis only slightly; however, it increased the nuclear transcription factor ,B (NF,B) 4-fold, a phenomenon also sensitive to DPI. Moreover, a 6-fold increase in rAAV transgene expression was observed in an acute ischemia-reperfusion model of oxidative stress. Transgene expression was transiently increased 24 hours after ischemia-reperfusion 3 days and 3 weeks after rAAV infection. Further, adenoviral expression of superoxide dismutase or I,B, superrepressor inhibited rAAV transgene expression caused by ischemia-reperfusion. Therefore, it is concluded that ethanol increases rAAV transgene expression via mechanisms dependent on oxidative stress, and NF,B likely through enhancement of cytomegaloviral (CMV) promoter elements. Alcoholic liver disease is an attractive target for gene therapy because consumption of ethanol could theoretically increase expression of therapeutic genes (e.g., superoxide dismutase). Moreover, this study has important implications for rAAV gene therapy and potential enhancement and regulation of transgene expression in liver. [source] High volume naked DNA tail-vein injection restores liver function in Fah-knock out miceJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 5 2010Elke Eggenhofer Abstract Background:, Despite pharmaceutical treatment with NTBC (2-2-nitro-4-fluoromethylbenzoyl-1,3-cyclohexanedione), a high incidence of liver malignancies occur in humans and mice suffering from hereditary tyrosinemia type 1 (HT1) caused by mutation of the fumarylacetoacetate hydrolase (fah) gene. Methods:, To evaluate the efficacy of a definitive treatment for HT1, we transfected fah knockout mice with naked plasmid DNA using high volume tail-vein injection. This approach was chosen to reduce the occurrence of insertional mutagenesis that is frequently observed when using other (retro-)viral vectors. To prolong gene expression, the fah gene was cloned between adeno-associated virus (AAV)-specific inverted terminal repeats (ITRs). Results:, All animals treated with high volume plasmid DNA injections could be successfully weaned off NTBC and survived in the long term without any further pharmacological support. Up to 50% fah positive hepatocytes were detected in livers of naked plasmid DNA-treated animals and serum liver function tests approximated those of wild-type controls. Conclusions:, Naked plasmid DNA transfection offers a promising alternative treatment for HT1. Minimizing side-effects makes this approach especially appealing. [source] Inhibition of myostatin with emphasis on follistatin as a therapy for muscle diseaseMUSCLE AND NERVE, Issue 3 2009Louise R. Rodino-Klapac PhD Abstract In most cases, pharmacologic strategies to treat genetic muscle disorders and certain acquired disorders, such as sporadic inclusion body myositis, have produced modest clinical benefits. In these conditions, inhibition of the myostatin pathway represents an alternative strategy to improve functional outcomes. Preclinical data that support this approach clearly demonstrate the potential for blocking the myostatin pathway. Follistatin has emerged as a powerful antagonist of myostatin that can increase muscle mass and strength. Follistatin was first isolated from the ovary and is known to suppress follicle-stimulating hormone. This raises concerns for potential adverse effects on the hypothalamic,pituitary,gonadal axis and possible reproductive capabilities. In this review we demonstrate a strategy to bypass off-target effects using an alternatively spliced cDNA of follistatin (FS344) delivered by adeno-associated virus (AAV) to muscle. The transgene product is a peptide of 315 amino acids that is secreted from the muscle and circulates in the serum, thus avoiding cell-surface binding sites. Using this approach our translational studies show increased muscle size and strength in species ranging from mice to monkeys. Adverse effects are avoided, and no organ system pathology or change in reproductive capabilities has been seen. These findings provide the impetus to move toward gene therapy clinical trials with delivery of AAV-FS344 to increase size and function of muscle in patients with neuromuscular disease. Muscle Nerve 39: 283,296, 2009 [source] Effects of antisense interleukin-5 gene transferred by recombinant adeno-associated virus to allergic ratsRESPIROLOGY, Issue 1 2010Daxiong ZENG ABSTRACT Background and objective: The accumulation of eosinophils in airways is an important characteristic of asthma. The process is primarily mediated by interleukin-5 (IL-5) secreted by Th2 lymphocytes. This study explored a new approach to asthma therapy in which allergic rats were transfected with the IL-5 antisense gene delivered by the recombinant adeno-associated virus (rAAV-ASIL-5). Methods: The viral vector rAAV-ASIL-5 was constructed and the IL-5 antisense gene transfected into allergic rats. The levels of IL-5, IgE, eotaxin and eosinophilic cationic protein (ECP) in sera and bronchoalveolar lavage fluid (BALF) were measured by ELISA. The inflammatory responses in lung tissues were evaluated by histological study. Results: The levels of IL-5 protein in serum and BALF were significantly decreased in the allergic rats treated with rAAV-ASIL-5 (P < 0.05). Serum ovalbumin-specific IgE was reduced in treated rats compared with untreated rats (P < 0.05). rAAV-ASIL-5 treatment also reduced eosinophils in the peripheral blood and BALF, as well as the ECP and eotaxin levels in serum and BALF (P < 0.05). There was significantly less inflammation in the lungs of rAAV-ASIL-5-treated rats than in those of untreated rats. No obvious pathological damage to the kidneys and livers of the rats treated with rAAV was observed. Conclusions: Treatment with rAAV-ASIL-5 inhibited the accumulation of eosinophils and airway inflammation in the rat model of allergic asthma by suppressing IL-5 production. These results suggest that rAAV-ASIL-5-based gene therapy may be used for the treatment of allergic asthma. [source] Enhancing rAAV vector expression in the lungTHE JOURNAL OF GENE MEDICINE, Issue 7 2005Isabel Virella-Lowell Abstract Despite favorable DNA transfer efficiency, gene expression from recombinant adeno-associated virus (rAAV2) vectors in the lung has been variable in the context of cystic fibrosis (CF) gene therapy. This is due, in part, to the large size of the CF transmembrane regulator (CFTR)-coding sequence which necessitates the use of compact endogenous promoter elements versus stronger exogenous promoters. We evaluated the possibility that gene expression from rAAV could be improved by using AAV capsid serotypes with greater tropism for the apical surface of airway cells (i.e. rAAV5 or rAAV1) and/or using strong promoters such as the cytomegalovirus (CMV) enhancer/chicken beta-actin hybrid (C,) promoter. The relative activity of the CMV immediate-early (CMVie) promoter, the C, promoter, and the C, promoter with a downstream woodchuck hepatitis virus post-transcriptional regulatory element (wpre) were assessed in vitro and in vivo in C57\Bl6 mice using human alpha-1 antitrypsin (hAAT) as a secreted reporter. In vivo, the C,-AAT-wpre group achieved maximum serum levels of 1.5 mg/ml of hAAT. AAV capsid serotypes were then compared in vivo utilizing the transcriptionally optimized CB-wpre cassette in rAAV serotype 1, 2 or 5 capsids (rAAV1, rAAV2, and rAAV5), utilizing luciferase as a reporter to compare expression over a wide dynamic range. The pulmonary luciferase levels at 8 weeks were similar in rAAV5 and rAAV1 groups (2.9 × 106 relative light units (RLU)/g tissue and 2.7 × 106 RLU/g tissue, respectively), both of which were much higher than rAAV2. Although the advantage of rAAV5 over rAAV2 in the lung has already been described, the availability of another serotype (rAAV1) capable of efficient gene transfer in the lung could be useful. Copyright © 2005 John Wiley & Sons, Ltd. [source] Inflammatory cytokine regulation of transgene expression in human fibroblast-like synoviocytes infected with adeno-associated virusARTHRITIS & RHEUMATISM, Issue 7 2006Russell S. Traister Objective An ideal gene transfer vector for chronic inflammatory diseases such as rheumatoid arthritis (RA) would provide local transgene expression only when the disease is active. To determine whether adeno-associated virus (AAV) possesses this ability, the effects of inflammatory cytokines on transgene expression were evaluated in human RA fibroblast-like synoviocytes (FLS). Methods Human FLS were infected with AAV in the presence or absence of inflammatory cytokines or synovial fluid obtained from patients with RA. Transgene expression was monitored by either enzyme-linked immunosorbent assay or flow cytometry. Transgene messenger RNA (mRNA) was measured by real-time quantitative reverse transcription,polymerase chain reaction. Results Inflammatory cytokines increased transgene expression in FLS by up to 60-fold. Synovial fluid from patients with RA, but not from patients without arthritis, was also able to increase expression in synoviocytes. Protein expression correlated with transgene mRNA levels. The enhanced expression required the continued presence of cytokines because, upon removal, transgene expression returned to baseline levels. Expression could be repeatedly reinduced by reexposure to cytokines. The effect was not promoter specific and was demonstrated to be phosphatidylinositol 3-kinase,dependent. Conclusion These results suggest that expression of a therapeutic transgene can be controlled by the presence of inflammation following AAV gene transfer, making it an attractive vector for chronic inflammatory diseases such as RA. [source] Structure determination of adeno-associated virus 2: three complete virus particles per asymmetric unitACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2003Qing Xie The atomic structure of adeno-associated virus 2 (AAV-2) has been determined to 3.0,Å resolution. AAV-2 crystallized in space group P1, with unit-cell parameters a = 249.7, b = 249.7, c = 644.8,Å, , = 90.0, , = 101.2, , = 120.0°. The crystals contained three full virus particles in the asymmetric unit, allowing 180-fold non-crystallographic symmetry averaging. The particle orientations were determined using the self-rotation function and found to have similar but resolvably different orientations. Approximate alignment of icosahedral and interparticle threefold screw symmetry led to a native Patterson that was interpretable in terms of approximate particle positions. Accurate positions required a Patterson correlation search that was constrained to be consistent with non-crystallographic threefold projection symmetry evident in the diffraction intensities. Initial phases to 15.0,Å resolution were calculated by molecular replacement using the known structure of a distantly related homolog (23% sequence identity). Real-space averaging was performed and phases were extended from 15.0 to 3.0,Å. An atomic model was fitted and refined using a simulated-annealing real-space procedure. [source] Scalable production of adeno-associated virus type 2 vectors via suspension transfection,BIOTECHNOLOGY & BIOENGINEERING, Issue 3 2006Joon Young Park Abstract Vectors derived from adeno-associated virus type 2 (AAV2) are promising gene delivery vehicles, but it is still challenging to get the large number of recombinant adeno-associated virus (rAAV) particles required for large animal and clinical studies. Current transfection technology requires adherent cultures of HEK 293 cells that can only be expanded by preparing multiple culture plates. A single large-scale suspension culture could replace these multiple culture preparations, but there is currently no effective co-transfection scheme for generating rAAV from cells in suspension culture. Here, we weaned HEK 293 cells to suspension culture using hydrogel-coated six-well culture plates and established an efficient transfection strategy suitable for these cells. Then the cultures were gradually scaled up. We used linear polyethylenimine (PEI) to mediate transfection and obtained high transfection efficiencies ranging from 54% to 99%, thereby allowing efficient generation of rAAV vectors. Up to 1013 rAAV particles and, more importantly, up to 1011 infectious particles were generated from a 2-L bioreactor culture. The suspension-transfection strategy of this study facilitates the homogeneous preparation of rAAV at a large scale, and holds further potential as the basis for establishing a manufacturing process in a larger bioreactor. © 2006 Wiley Periodicals, Inc. [source] 4135: Matrix metalloproteinase 14 overexpression reduces corneal scarringACTA OPHTHALMOLOGICA, Issue 2010S GALIACY Purpose Corneal wound healing is an everyday preoccupation for ophthalmologists.Corneal transparency depends on the scarring quality after a traumatic corneal wound, but also after refractive corneal surgery. Cicatrisation and fibrosis formation involve epithelial/fibroblast interactions via paracrin signals inducing extracellular matrix (ECM) remodelling. The major event is fibroblast activation and differentiation into myofibroblasts. These cells have a key role in the fibrotic response. They acquire contractile properties, and synthetise a new ECM, mainly composed of type III collagen. This scar tissue is less organised than the regular stroma, thus explaining corneal opacity. ECM remodelling is a critical step which aims to digest the excess of ECM by proteolysis of type III collagen. MMP14 is a membrane-bound fibrillar collagenase from the Matrix Metalloprotease family. We hypothesised that its overexpression in the corneal stroma during wound repair will increase ECM remodelling and thus prevent collagen deposition in the scar tissue. Methods We developed an adeno-associated virus-based vector expressing murine MMP14 under the control of the CMV promoter. We evaluated MMP14 overexpression after viral transfection in a murine model of corneal wound healing. We characterised several parameters: clinical observation, histology, and wound healing markers. Results Our preliminary results showed a decreased in oedema and corneal scar formation, associated with a decreased expression of alpha smooth actin and type III collagen. Conclusion These results represent proof of concept that gene transfer of MMP14 can reduce scar formation, which could have therapeutic applications after corneal trauma. [source] |