Home About us Contact | |||
Adaptive Radiation (adaptive + radiation)
Selected AbstractsNATURAL HISTORY, ECOLOGY, AND EVOLUTION OF A REMARKABLE ADAPTIVE RADIATIONEVOLUTION, Issue 5 2010Steven M. Vamosi No abstract is available for this article. [source] Adaptive radiation through phenological shift: the importance of the temporal niche in species diversificationECOLOGICAL ENTOMOLOGY, Issue 1 2009JEAN-MARIE SACHET Abstract 1.,Phenological shift in oviposition in seed predators may be a key factor for adaptive radiation if temporal differences lead to less intense competition. 2.,This hypothesis was tested at two sites in the French Alps in three sympatric species of larch cone flies grouped into two phenological groups (early and late) differing in adult emergence and oviposition timing by approximately 2 weeks. The present study assessed the intensity of competition within and between groups by measuring four larval traits. Cone traits were measured, and the impact of early species parasitism on cone development was assessed. 3.,The occupation of the central axis of a developing cone by one early larva has a strong detrimental effect on cone growth and seed production. However, there was almost no correlation between the variables measured on the cones and on the larvae, suggesting that the resources available were not limiting. 4.,Inter-group competition had no significant effect on early larvae. In contrast, both inter- and intra-group competition had a significant negative effect on late larvae length (,11% and ,16% respectively), dry mass (,8% and ,23%), and lipid mass (,15% and ,26%). The intensity of competition was stronger among larvae in the same phenological group, which is consistent with the hypothesis that shifts in oviposition promote adaptive radiation in larch cone flies by reducing competition among larvae. [source] Adaptive radiation into ecological niches with eruptive dynamics: a comparison of tenthredinid and diprionid sawfliesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2005PETER W. PRICE Summary 1We tested the hypothesis that the bottom-up influence of coniferous plant resources promotes the probability of outbreak or eruptive dynamics in sawflies. The literature was examined for three geographical regions , North America north of Mexico, Europe and Japan. 2In each region tenthredinid sawflies (Hymenoptera: Tenthredinidae) were significantly more likely to be eruptive on conifers than on angiosperms. 3The diprionid sawflies (Hymenoptera: Diprionidae) that attack conifers exclusively showed a significantly higher probability of eruptive dynamics than the tenthredinid sawflies on angiosperms in two regions, North America and Europe, and in Japan the trend was in the same direction. 4The probability of species showing eruptive dynamics on coniferous hosts was not significantly different among tenthredinids and diprionids on conifers in North America, Europe and Japan. 5The weight of evidence supports the hypothesis of conifers supporting a higher percentage of eruptive species than angiosperms. 6In the adaptive radiation of tenthredinid sawflies from flowering plants onto conifers, larches (Larix) appear to be particularly favourable for colonization, but pines (Pinus) have not been colonized in any region, a pattern likely to be explained by the growth characteristics of the host plants. 7Among tenthredinid species in Europe, where sawfly/host relationships are best known, there is a significant trend for an increasing proportion of outbreaking species from herbs, to shrubs, to trees. 8The results indicate for the first time the strong bottom-up effects of plant resources on the population dynamics of sawflies, involving general features of host plant taxa and growth characteristics. [source] Adaptive radiation in African weakly electric fish (Teleostei: Mormyridae: Campylomormyrus): a combined molecular and morphological approachJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 1 2007P. G. D. FEULNER Abstract We combined multiple molecular markers and geometric morphometrics to revise the current taxonomy and to build a phylogenetic hypothesis for the African weakly electric fish genus Campylomormyrus. Genetic data (2039 bp DNA sequence of mitochondrial cytochrome b and nuclear S7 genes) on 106 specimens support the existence of at least six species occurring in sympatry. We were able to further confirm these species by microsatellite analysis at 16 unlinked nuclear loci and landmark-based morphometrics. We assigned them to nominal taxa by comparisons to type specimens of all Campylomormyrus species recognized so far. Additionally, we showed that the shape of the elongated trunk-like snout is the major source of morphological differentiation among them. This finding suggests that the radiation of this speciose genus might have been driven by adaptation to different food sources. [source] Adaptive radiation in microbial microcosmsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2005R. CRAIG MACLEAN Abstract It has often been argued that evolutionary diversification is the result of divergent natural selection for specialization on alternative resources. I provide a comprehensive review of experiments that examine the ecology and genetics of resource specialization and adaptive radiation in microbial microcosms. In these experiments, resource heterogeneity generates divergent selection for specialization on alternative resources. At a molecular level, the evolution of specialization is generally attributable to mutations that de-regulate the expression of existing biosynthetic and catabolic pathways. Trade-offs are associated with the evolution of resource specialization, but these trade-offs are often not the result of antagonistic pleiotropy. Replicate adaptive radiations result in the evolution of a similar assemblage of specialists, but the genetic basis of specialization differs in replicate radiations. The implications of microbial selection experiments for evolutionary theory are discussed and future directions of research are proposed. [source] Adaptive radiation in Lesser Antillean lizards: molecular phylogenetics and species recognition in the Lesser Antillean dwarf gecko complex, Sphaerodactylus fantasticusMOLECULAR ECOLOGY, Issue 6 2008R. S. THORPE Abstract The time associated with speciation varies dramatically among lower vertebrates. The nature and timing of divergence is investigated in the fantastic dwarf gecko Sphaerodactylus fantasticus complex, a nominal species that occurs on the central Lesser Antillean island of Guadeloupe and adjacent islands and islets. This is compared to the divergence in the sympatric anole clade from the Anolis bimaculatus group. A molecular phylogenetic analysis of numerous gecko populations from across these islands, based on three mitochondrial DNA genes, reveals several monophyletic groups occupying distinct geographical areas, these being Les Saintes, western Basse Terre plus Dominica, eastern Basse Terre, Grand Terre, and the northern and eastern islands (Montserrat, Marie Galante, Petite Terre, Desirade). Although part of the same nominal species, the molecular divergence within this species complex is extraordinarily high (27% patristic distance between the most divergent lineages) and is compatible with this group occupying the region long before the origin of the younger island arc. Tests show that several quantitative morphological traits are correlated with the phylogeny, but in general the lineages are not uniquely defined by these traits. The dwarf geckos show notably less nominal species-level adaptive radiation than that found in the sympatric southern clade of Anolis bimculatus, although both appear to have occupied the region for a broadly similar period of time. Nevertheless, the dwarf gecko populations on Les Saintes islets are the most morphologically distinct and are recognized as a full species (Sphaerodactylus phyzacinus), as are anoles on Les Saintes (Anolis terraealtae). [source] Microgeographical diversification of threespine stickleback: body shape,habitat correlations in a small, ecologically diverse Alaskan drainageBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009WINDSOR E. AGUIRRE Adaptive radiations are a major source of evolutionary diversity in nature, and understanding how they originate and how organisms diversify during the early stages of adaptive radiation is a major problem in evolutionary biology. The relationship between habitat type and body shape variation was investigated in a postglacial radiation of threespine stickleback in the upper Fish Creek drainage of Cook Inlet, Alaska. Although small, the upper Fish Creek drainage includes ecologically diverse lakes and streams in close proximity to one another that harbour abundant stickleback. Specimens from ancestral anadromous and derived resident freshwater populations differed substantially and could be distinguished by body shape alone, suggesting that the initial stages of adaptation contribute disproportionately to evolutionary divergence. Body shape divergence among resident freshwater populations was also considerable, and phenotypic distances among samples from freshwater populations were associated with habitat type but not geographical distance. As expected, stream stickleback from slow-moving, structurally complex environments tended to have the deepest bodies, stickleback from lakes with a mostly benthic habitat were similar but less extreme, and stickleback from lakes with a mostly limnetic habitat were the most shallow-bodied, elongate fish. Beyond adapting rapidly to conditions in freshwater environments, stickleback can diversify rapidly over small geographical scales in freshwater systems despite opportunities for gene flow. This study highlights the importance of ecological heterogeneity over small geographical scales for evolutionary diversification during the early stages of adaptive radiation, and lays the foundation for future research on this ecologically diverse, postglacial system. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 98, 139,151. [source] Adaptive radiation through phenological shift: the importance of the temporal niche in species diversificationECOLOGICAL ENTOMOLOGY, Issue 1 2009JEAN-MARIE SACHET Abstract 1.,Phenological shift in oviposition in seed predators may be a key factor for adaptive radiation if temporal differences lead to less intense competition. 2.,This hypothesis was tested at two sites in the French Alps in three sympatric species of larch cone flies grouped into two phenological groups (early and late) differing in adult emergence and oviposition timing by approximately 2 weeks. The present study assessed the intensity of competition within and between groups by measuring four larval traits. Cone traits were measured, and the impact of early species parasitism on cone development was assessed. 3.,The occupation of the central axis of a developing cone by one early larva has a strong detrimental effect on cone growth and seed production. However, there was almost no correlation between the variables measured on the cones and on the larvae, suggesting that the resources available were not limiting. 4.,Inter-group competition had no significant effect on early larvae. In contrast, both inter- and intra-group competition had a significant negative effect on late larvae length (,11% and ,16% respectively), dry mass (,8% and ,23%), and lipid mass (,15% and ,26%). The intensity of competition was stronger among larvae in the same phenological group, which is consistent with the hypothesis that shifts in oviposition promote adaptive radiation in larch cone flies by reducing competition among larvae. [source] The tri-trophic niche concept and adaptive radiation of phytophagous insectsECOLOGY LETTERS, Issue 12 2005Michael S. Singer Abstract A conceptual divide exists between ecological and evolutionary approaches to understanding adaptive radiation, although the phenomenon is inherently both ecological and evolutionary. This divide is evident in studies of phytophagous insects, a highly diverse group that has been frequently investigated with the implicit or explicit goal of understanding its diversity. Whereas ecological studies of phytophagous insects increasingly recognize the importance of tri-trophic interactions as determinants of niche dimensions such as host-plant associations, evolutionary studies typically neglect the third trophic level. Here we attempt to reconcile ecological and evolutionary approaches through the concept of the ecological niche. We specifically present a tri-trophic niche concept as a foil to the traditional bi-trophic niche concept for phytophagous insects. We argue that these niche concepts have different implications for understanding herbivore community structure, population divergence, and evolutionary diversification. To this end, we offer contrasting empirical predictions of bi- and tri-trophic niche concepts for patterns of community structure, the process of population divergence, and patterns of evolutionary diversification of phytophagous insects. [source] Patterns of phenotypic and genetic variability show hidden diversity in Scottish Arctic charrECOLOGY OF FRESHWATER FISH, Issue 1 2007C. E. Adams Abstract,,, This study examined the degree and pattern of variability in trophic morphology in Arctic charr (Salvelinus alpinus L.) at three spatial scales: across 22 populations from Scotland and between and within two adjacent catchments (Laxford and Shin) in northern Scotland. In addition, the variability at six microsatellite loci between and within the Laxford and Shin systems was determined. Habitat use by charr differed significantly between populations. The pattern of variability in trophic morphology, known to influence foraging ability in charr, showed a very high degree of between-population variation with at least 52% of population pairs showing significant differences in head shape. Trophic morphology and genetic variation was also high over small geographical scales; variation being as high between charr from lakes within the same catchment, as between adjacent catchments. The pattern of both phenotypic and genotypic variation suggests a mosaic of variation across populations with geographically close populations often as distinct from each other as populations with much greater separation. Very low levels of effective migrants between populations, even within the same catchment, suggest that this variation is being maintained by very low straying rates between phenotypically and genetically distinct populations, even when there is no apparent barrier to movement. We conclude that the genetic and phenotypic integrity of charr populations across Scotland is high and that this adaptive radiation constitutes a ,hidden' element of diversity in northern freshwater systems. Two consequences of this are that the population (rather than the species) makes a more rational unit for the consideration of conservation strategies and that the habitat requirements and therefore management needs may differ significantly between populations. [source] DISCOVERING EXCEPTIONAL DIVERSIFICATIONS AT CONTINENTAL SCALES: THE CASE OF THE ENDEMIC FAMILIES OF NEOTROPICAL SUBOSCINE PASSERINESEVOLUTION, Issue 7 2010Santiago Claramunt The study of continental adaptive radiations has lagged behind research on their island counterparts in part because the mere identification of adaptive radiations is more challenging at continental scales. Here, I demonstrate a new method based on simulations for discovering clades that show exceptionally high phenotypic diversity. The method does not require a phylogeny but accounts for differences in age and species richness among clades and incorporates effects of the phylogenetic structure of data. In addition, I developed a new multivariate measure of phenotypic diversity, which has the advantage over other measures of disparity in that it takes covariation into account. I applied these methods to a clade of endemic Neotropical suboscine passerines, within which the family Furnariidae has been considered an adaptive radiation. I found that the families Thamnophilidae, Furnariidae, and Dendrocolaptidae have experienced a higher rate of cladogenesis than have other clades. Although Thamnophilidae is exceptionally diverse in body size, only Furnariidae and Dendrocolaptidae are exceptionally diverse in shape. The combination of high rates of cladogenesis and high morphometric diversity in traits related to feeding and locomotion suggest that the clade Furnariidae-Dendrocolaptidae represent an authentic continental adaptive radiation. [source] ENVIRONMENTAL NICHE EQUIVALENCY VERSUS CONSERVATISM: QUANTITATIVE APPROACHES TO NICHE EVOLUTIONEVOLUTION, Issue 11 2008Dan L. Warren Environmental niche models, which are generated by combining species occurrence data with environmental GIS data layers, are increasingly used to answer fundamental questions about niche evolution, speciation, and the accumulation of ecological diversity within clades. The question of whether environmental niches are conserved over evolutionary time scales has attracted considerable attention, but often produced conflicting conclusions. This conflict, however, may result from differences in how niche similarity is measured and the specific null hypothesis being tested. We develop new methods for quantifying niche overlap that rely on a traditional ecological measure and a metric from mathematical statistics. We reexamine a classic study of niche conservatism between sister species in several groups of Mexican animals, and, for the first time, address alternative definitions of "niche conservatism" within a single framework using consistent methods. As expected, we find that environmental niches of sister species are more similar than expected under three distinct null hypotheses, but that they are rarely identical. We demonstrate how our measures can be used in phylogenetic comparative analyses by reexamining niche divergence in an adaptive radiation of Cuban anoles. Our results show that environmental niche overlap is closely tied to geographic overlap, but not to phylogenetic distances, suggesting that niche conservatism has not constrained local communities in this group to consist of closely related species. We suggest various randomization tests that may prove useful in other areas of ecology and evolutionary biology. [source] PHYLOGENETIC ANALYSIS OF ECOMORPHOLOGICAL DIVERGENCE, COMMUNITY STRUCTURE, AND DIVERSIFICATION RATES IN DUSKY SALAMANDERS (PLETHODONTIDAE: DESMOGNATHUS)EVOLUTION, Issue 9 2005Kenneth H. Kozak Abstract An important dimension of adaptive radiation is the degree to which diversification rates fluctuate or remain constant through time. Focusing on plethodontid salamanders of the genus Desmognathus, we present a novel synthetic analysis of phylogeographic history, rates of ecomorphological evolution and species accumulation, and community assembly in an adaptive radiation. Dusky salamanders are highly variable in life history, body size, and ecology, with many endemic lineages in the southern Appalachian Highlands of eastern North America. Our results show that lifehistory evolution had important consequences for the buildup of plethodontid-salamander species richness and phenotypic disparity in eastern North America, a global hot spot of salamander biodiversity. The origin of Desmognathus species with aquatic larvae was followed by a high rate of lineage accumulation, which then gradually decreased toward the present time. The peak period of lineage accumulation in the group coincides with evolutionary partitioning of lineages with aquatic larvae into seepage, stream-edge, and stream microhabitats. Phylogenetic simulations demonstrate a strong correlation between morphology and microhabitat ecology independent of phylogenetic effects and suggest that ecomorphological changes are concentrated early in the radiation of Desmognathus. Deep phylogeographic fragmentation within many codistributed ecomorph clades suggests long-term persistence of ecomorphological features and stability of endemic lineages and communities through multiple climatic cycles. Phylogenetic analyses of community structure show that ecomorphological divergence promotes the coexistence of lineages and that repeated, independent evolution of microhabitat-associated ecomorphs has a limited role in the evolutionary assembly of Desmognathus communities. Comparing and contrasting our results to other adaptive radiations having different biogeographic histories, our results suggest that rates of diversification during adaptive radiation are intimately linked to the degree to which community structure persists over evolutionary time. [source] RAPID SPECIATION AND ECOLOGICAL DIVERGENCE IN THE AMERICAN SEVEN-SPINED GOBIES (GOBIIDAE, GOBIOSOMATINI) INFERRED FROM A MOLECULAR PHYLOGENYEVOLUTION, Issue 7 2003Lukas Rüber Abstract., The American seven-spined gobies (Gobiidae, Gobiosomatini) are highly diverse both in morphology and ecology with many endemics in the Caribbean region. We have reconstructed a molecular phylogeny of 54 Gobio-somatini taxa (65 individuals) based on a 1646-bp region that includes the mitochondrial 12S rRNA, tRNA-Val, and 16S rRNA genes. Our results support the monophyly of the seven-spined gobies and are in agreement with the existence of two major groups within the tribe, the Gobiosoma group and the Microgobius group. However, they reject the monophyly of some of the Gobiosomatini genera. We use the molecular phylogeny to study the dynamics of speciation in the Gobiosomatini by testing for departures from the constant speciation rate model. We observe a burst of speciation in the early evolutionary history of the group and a subsequent slowdown. Our results show a split among clades into coastal-estuarian, deep ocean, and tropical reef habitats. Major habitat shifts account for the early significant acceleration in lineage splitting and speciation rate and the initial divergence of the main Gobiosomatini clades. We found that subsequent diversification is triggered by behavior and niche specializations at least in the reef-associated clades. Overall, our results confirm that the diversity of Gobiosomatini has arisen during episodes of adaptive radiation, and emphasize the importance of ecology in marine speciation. [source] PHYLOGENETIC RELATIONSHIPS AND MORPHOLOGICAL DIVERSITY IN DARWIN'S FINCHES AND THEIR RELATIVESEVOLUTION, Issue 6 2002Kevin J. Burns Abstract Despite the importance of Darwin's finches to the development of evolutionary theory, the origin of the group has only recently been examined using a rigorous, phylogenetic methodology that includes many potential outgroups. Knowing the evolutionary relationships of Darwin's finches to other birds is important for understanding the context from which this adaptive radiation arose. Here we show that analysis of mitochondrial DNA sequence data from the cytochrome b gene confirm that Darwin's finches are monophyletic. In addition, many taxa previously proposed as the sister taxon to Darwin's finches can be excluded as their closest living relative. Darwin's finches are part of a well-supported monophyletic group of species, all of which build a domed nest. All but two of the non-Darwin's finches included in this clade occur on Caribbean islands and most are Caribbean endemics. These close relatives of Darwin's finches show a diversity of bill types and feeding behaviors similar to that observed among Darwin's finches themselves. Recent studies have shown that adaptive evolution in Darwin's finches occurred relatively quickly. Our data show that among the relatives of Darwin's finches, the evolution of bill diversity was also rapid and extensive. [source] Neandertals, competition, and the origin of modern human behavior in the LevantEVOLUTIONARY ANTHROPOLOGY, Issue 4 2003John J. Shea Abstract The East Mediterranean Levant is a small region, but its paleoanthropological record looms large in debates about the origin of modern humans and the fate of the Neandertals. For most of the twentieth century, the Levantine paleoanthropological record supported models of continuity and evolutionary transition between Neandertals and early modern humans. Recent advances in radiometric dating have challenged these models by reversing the chronological relationship between Levantine Neandertals and early modern humans. This revised chronostratigraphy for Levantine Middle Paleolithic human fossils raises interesting questions about the evolutionary relationship between Neandertals and early modern humans. A reconsideration of this relationship moves us closer to understanding the long delay between the origin of morphologically modern-looking humans during the Middle Paleolithic (>130 Kyr) and the adaptive radiation of modern humans into Eurasia around the time of the transition from the Middle to Upper Paleolithic (50 to 30 Kyr). [source] Parasites can cause selection against migrants following dispersal between environmentsFUNCTIONAL ECOLOGY, Issue 4 2010Andrew D. C. MacColl Summary 1.,The potential for selection against migrants to promote population divergence and speciation is well established in theory, yet there has been relatively little empirical work that has explicitly considered selection against migrants as a form of reproductive barrier, and its importance in the accumulation of reproductive isolation between populations has been overlooked until recently. 2.,Parasites often differ between environments and can be an important source of selection on hosts, yet their contribution to population divergence in general, and selection against migrants in particular, is poorly understood. 3.,Selection against migrants might be reduced if organisms escape parasitism when they disperse (natural enemy release). Alternatively, parasites could increase selection against migrants if, when they disperse, organisms encounter parasites to which they are poorly adapted. 4.,Here we test experimentally the contribution that parasites could make to selection against migrants in the adaptive radiation of three-spined sticklebacks. These fish have repeatedly colonized freshwater environments from marine ones, and this has repeatedly lead to rapid speciation. 5.,We use transplant experiments of lab-raised fish to simulate dispersal, and antihelminthic treatment to show that ancestral-type marine sticklebacks contract higher burdens of novel parasites when introduced to freshwater, than in saltwater, and suffer a growth cost as a direct result. 6.,Susceptibility to parasites and their detrimental effect is less in derived, freshwater fish from evolutionarily young populations, possibly as a result of selection for resistance. 7.,Our results support a role for parasites in selection against migrants and population diversification. They do not support the hypothesis of ,natural enemy release'. [source] An ecomorphological study of the raptorial digital tendon locking mechanismIBIS, Issue 3 2006LUKE EINODER Extensive adaptive radiation in hindlimb design among raptors is well known. However, the degree of variation in the structure and expression of the digital tendon locking mechanism (TLM) and its adaptive significance have received little attention. This comparative morphological study of 12 raptor and three non-raptor species revealed a distinct raptorial design, characterized by a distally located TLM that is densely packed with locking elements of increased robustness and height. Although the Falconiformes and Strigiformes converged upon this pattern, unique design features were identified among the nocturnal birds of prey. Variation in TLM structure was often consistent with phylogeny, although interfamily similarities were revealed among a number of species with the same dietary habit. The evolutionary factors that may have led to the observed variation, as well as the biomechanical implications of varying designs, are discussed. [source] Body size structure of Pleistocene mammalian communities: what support is there for the "island rule"?INTEGRATIVE ZOOLOGY (ELECTRONIC), Issue 4 2009Maria R. PALOMBO Abstract Islands are often regarded by scientists as living laboratories of evolution and an optimal context for the study of forces influencing evolution and diversification. Two main issues have been attentively scrutinized and debated: the loss of biodiversity and the peculiar changes undergone by island settlers, primarily changes in size of endemic vertebrates. Over time, several hypotheses have been formulated to explain the causal mechanism of body size modification. Faunas of those islands where mainland taxa migrate more than once provide the most interesting data to answer the question of whether or not trends of insular taxa result from a predictable response to differences in competition and availability of niches between insular and mainland environments. To contribute to the debate, the body size structure of the Pleistocene mammalian faunas from two Mediterranean islands, Sicily and Crete, were analyzed and compared with the structure of coeval mainland faunas. The results obtained suggest that: (i) size of endemic species does not directly depend on the area of islands; (ii) evolution and size of endemic species seems somewhat affected by the degree of isolation (constraining colonization from mainland) and physiography (sometimes permitting adaptive radiation); (iii) in unbalanced insular communities, the shift in size of non-carnivorous species largely depends on the nature of competing species; and (iv) body size of carnivorous species mainly depends on the size of the most available prey. Consequently, it is rational to suppose that the body size of insular mammals mainly results from the peculiar biological dynamics that characterizes unbalanced insular communities. Ecological interaction, particularly the intraguild competition, is the major driver behind the evolution of insular communities, leading towards an optimization of energy balance through a change in body size of endemic settlers. [source] Adaptive radiation into ecological niches with eruptive dynamics: a comparison of tenthredinid and diprionid sawfliesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2005PETER W. PRICE Summary 1We tested the hypothesis that the bottom-up influence of coniferous plant resources promotes the probability of outbreak or eruptive dynamics in sawflies. The literature was examined for three geographical regions , North America north of Mexico, Europe and Japan. 2In each region tenthredinid sawflies (Hymenoptera: Tenthredinidae) were significantly more likely to be eruptive on conifers than on angiosperms. 3The diprionid sawflies (Hymenoptera: Diprionidae) that attack conifers exclusively showed a significantly higher probability of eruptive dynamics than the tenthredinid sawflies on angiosperms in two regions, North America and Europe, and in Japan the trend was in the same direction. 4The probability of species showing eruptive dynamics on coniferous hosts was not significantly different among tenthredinids and diprionids on conifers in North America, Europe and Japan. 5The weight of evidence supports the hypothesis of conifers supporting a higher percentage of eruptive species than angiosperms. 6In the adaptive radiation of tenthredinid sawflies from flowering plants onto conifers, larches (Larix) appear to be particularly favourable for colonization, but pines (Pinus) have not been colonized in any region, a pattern likely to be explained by the growth characteristics of the host plants. 7Among tenthredinid species in Europe, where sawfly/host relationships are best known, there is a significant trend for an increasing proportion of outbreaking species from herbs, to shrubs, to trees. 8The results indicate for the first time the strong bottom-up effects of plant resources on the population dynamics of sawflies, involving general features of host plant taxa and growth characteristics. [source] The role of competition in adaptive radiation: a field study on sequentially ovipositing host-specific seed predatorsJOURNAL OF ANIMAL ECOLOGY, Issue 1 2004Laurence Després Summary 1We propose an alternative model to the host-shifting model of sympatric speciation in plant,insect systems. The role of competition in driving ecological adaptive radiation was evaluated in a seed predator exploiting a single host-plant species. Sympatric speciation may occur through disruptive selection on oviposition timing if this shift decreases competition among larvae feeding on seeds. 2The globeflower fly Chiastocheta presents a unique case of adaptive radiation, with at least six sister species co-developing in fruits of Trollius europaeus. These species all feed on seeds, and differ in their oviposition timing, one species ovipositing in 1-day-old flowers (early species), while all the other species sequentially oviposit throughout the flower life span (late species). We evaluated the impact of conspecific and heterospecific larvae on larval installation success, and on larval fresh mass and area, for early and late species, in natural conditions. 3None of the three larval traits measured was correlated with fruit size, and no fruit lost all seeds to predation, suggesting that seed availability was not a limiting factor for larval development. 4Our results show strong intraspecific competition among early larvae for larval installation, and among late larvae for larval mass. By contrast, larval competition between species was weak. These results are consistent with the hypothesis that shifts in oviposition promoted rapid radiation in globeflower flies by lowering competition among larvae. [source] Long-standing environmental conditions, geographic isolation and host,symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus SymbiodiniumJOURNAL OF BIOGEOGRAPHY, Issue 5 2010Todd C. LaJeunesse Abstract Aim, This study examines the importance of geographic proximity, host life history and regional and local differences in environment (temperature and water clarity) in driving the ecological and evolutionary processes underpinning the global patterns of diversity and distribution of symbiotic dinoflagellates. By comparing and contrasting coral,algal symbioses from isolated regions with differing environmental conditions, we may assess the potential of coral communities to respond to significant changes in climate. Location, Indian Ocean. Methods, Community assemblages of obligate symbiotic invertebrates were sampled at numerous sites from two regions, the north-eastern Indian Ocean (Andaman Sea, western Thailand) and the western Indian Ocean (Zanzibar, Tanzania). Molecular genetic methods, including denaturing gradient gel electrophoresis analysis of the ribosomal internal transcribed spacers, DNA sequencing and microsatellite genotyping, were used to characterize the ,species' diversity and evolutionary relationships of symbiotic dinoflagellates (genus Symbiodinium). Host,symbiont specificity, geographic isolation and local and regional environmental factors were evaluated in terms of their importance in governing the distribution and prevalence of certain symbiont taxa. Results, Host-generalist symbionts (C3u and D1-4, formerly D1a now designated Symbiodinium trenchi) frequently occurred alone and sometimes together in hosts with horizontal modes of symbiont acquisition. However, the majority of Symbiodinium diversity consisted of apparently host-specific ,species'. Clade C Symbiodinium were diverse and dominated host assemblages from sites sampled in the western Indian Ocean, a pattern analogous to symbiont communities on the Great Barrier Reef with similar environmental conditions. Clade D Symbiodinium were diverse and occurred frequently in hosts from the north-eastern Indian Ocean, especially at inshore locations, where temperatures are warmer, water turbidity is high and large tidal exchanges commonly expose coral populations to aerial desiccation. Main conclusions, Regional and local differences in cnidarian,algal combinations indicate that these symbioses are ecologically and evolutionarily responsive and can thrive under various environmental conditions. The high temperatures and turbid conditions of the north-eastern Indian Ocean partly explain the ecological success of Clade D Symbiodinium relative to Clade C. Phylogenetic, ecological and population genetic data further indicate that Clade D has undergone an adaptive radiation, especially in regions around Southeast Asia, during the Pleistocene. [source] A synthesis of adaptive radiationJOURNAL OF BIOGEOGRAPHY, Issue 5 2001D. (2000) The ecology of adaptive radiation., Schluter No abstract is available for this article. [source] Breeding system, branching processes, hybrid swarm theory, and the humped-back diversity relationship as additional explanations for apparent monophyly in the Macaronesian island floraJOURNAL OF ECOLOGY, Issue 4 2005N. ELIZABETH SAUNDERS Summary 1Niche pre-emption and competitive exclusion is unsatisfactory as a sole explanation for the apparent paradox of a large number of monophyletic taxa in the Macaronesian island flora. 2Undetected hybridizations have been proposed as an additional plausible explanation. In addition, hybrid swarm theory predicts that hybridizations between invading species would promote adaptive radiation. 3We suggest that branching processes and coalescence offer yet another plausible explanation allowing for multiple colonizations of closely related taxa, which, because of their later local extinction or hybridization, would lead to apparent monophyly in the molecular record. 4The cause of such widespread radiation of a few taxa has not been explained, but may involve intermediate conditions of disturbance or productivity. This proposition has, to date, only been tested in a microbial model system, but it offers a reasonable explanation for the patterns observed in the Macaronesian flora, and perhaps in other island floras worldwide. [source] The monophyly of island radiations: an evaluation of niche pre-emption and some alternative explanationsJOURNAL OF ECOLOGY, Issue 4 2005JONATHAN SILVERTOWN Summary 1It has been argued that niche pre-emption is not the only possible explanation for monophyly among Macaronesian endemic plants because (i) interspecific competition is diffuse, not species-specific, (ii) the radiations in question may not in fact be monophyletic, and (iii) later colonists may have hybridized with earlier ones, making a small and undetected contribution to the gene pool of lineages that appear to be monophyletic. 2The niche pre-emption mechanism does not, however, require species-specific competitive interactions. It merely proposes that the clade created by adaptive radiation will occupy more niche space than the original colonist could on its own. Members of the clade will then collectively inhibit establishment by new colonists more effectively than can a colonist that has not radiated. 3The monophyly of many larger radiations in the Macaronesian flora is well established and new studies tend to confirm this pattern. 4A few later-arriving colonists may have undetectably hybridized with earlier arrivals, but this is only a genetic interpretation of the essential idea behind pre-emption, i.e. that early arrivals so outnumber later colonists that the latter cannot establish. 5We do not therefore believe that hybridization provides an alternative explanation of why groups with multiple colonization failed to radiate in Macaronesia. [source] Ecological opportunity and the origin of adaptive radiationsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 8 2010J. B. YODER Abstract Ecological opportunity , through entry into a new environment, the origin of a key innovation or extinction of antagonists , is widely thought to link ecological population dynamics to evolutionary diversification. The population-level processes arising from ecological opportunity are well documented under the concept of ecological release. However, there is little consensus as to how these processes promote phenotypic diversification, rapid speciation and adaptive radiation. We propose that ecological opportunity could promote adaptive radiation by generating specific changes to the selective regimes acting on natural populations, both by relaxing effective stabilizing selection and by creating conditions that ultimately generate diversifying selection. We assess theoretical and empirical evidence for these effects of ecological opportunity and review emerging phylogenetic approaches that attempt to detect the signature of ecological opportunity across geological time. Finally, we evaluate the evidence for the evolutionary effects of ecological opportunity in the diversification of Caribbean Anolis lizards. Some of the processes that could link ecological opportunity to adaptive radiation are well documented, but others remain unsupported. We suggest that more study is required to characterize the form of natural selection acting on natural populations and to better describe the relationship between ecological opportunity and speciation rates. [source] Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiationJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 8 2009R. B. STELKENS Abstract The hypothesis of ecological divergence giving rise to premating isolation in the face of gene flow is controversial. However, this may be an important mechanism to explain the rapid multiplication of species during adaptive radiation following the colonization of a new environment when geographical barriers to gene flow are largely absent but underutilized niche space is abundant. Using cichlid fish, we tested the prediction of ecological speciation that the strength of premating isolation among species is predicted by phenotypic rather than genetic distance. We conducted mate choice experiments between three closely related, sympatric species of a recent radiation in Lake Mweru (Zambia/DRC) that differ in habitat use and phenotype, and a distantly related population from Lake Bangweulu that resembles one of the species in Lake Mweru. We found significant assortative mating among all closely related, sympatric species that differed phenotypically, but none between the distantly related allopatric populations of more similar phenotype. Phenotypic distance between species was a good predictor of the strength of premating isolation, suggesting that assortative mating can evolve rapidly in association with ecological divergence during adaptive radiation. Our data also reveals that distantly related allopatric populations that have not diverged phenotypically, may hybridize when coming into secondary contact, e.g. upon river capture because of diversion of drainage systems. [source] Adaptive radiation in microbial microcosmsJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 6 2005R. CRAIG MACLEAN Abstract It has often been argued that evolutionary diversification is the result of divergent natural selection for specialization on alternative resources. I provide a comprehensive review of experiments that examine the ecology and genetics of resource specialization and adaptive radiation in microbial microcosms. In these experiments, resource heterogeneity generates divergent selection for specialization on alternative resources. At a molecular level, the evolution of specialization is generally attributable to mutations that de-regulate the expression of existing biosynthetic and catabolic pathways. Trade-offs are associated with the evolution of resource specialization, but these trade-offs are often not the result of antagonistic pleiotropy. Replicate adaptive radiations result in the evolution of a similar assemblage of specialists, but the genetic basis of specialization differs in replicate radiations. The implications of microbial selection experiments for evolutionary theory are discussed and future directions of research are proposed. [source] The geographic selection mosaic for squirrels, crossbills and Aleppo pineJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 2 2005E. T. MEZQUIDA Abstract The interactions between many species are structured in a geographic mosaic of populations among which selection is divergent. Here we tested the hypothesis that such a geographic selection mosaic arises for common crossbills (Loxia curvirostra) feeding on seeds in the cones of Aleppo pine (Pinus halepensis) because of geographic variation in the occurrence of European red squirrels (Sciurus vulgaris). On the Iberian Peninsula, Sciurus exerted directional selection favouring larger cones with larger scales, which has caused cones there to be larger than in the Balearic Islands where Sciurus are absent. Moreover, cones on the Iberian Peninsula are so large that they are apparently little used by the relatively small-billed crossbills on the Peninsula; selection by Sciurus seems to have made the cones so difficult to feed on that crossbills rely mostly on the seeds of other conifers. Where crossbills are present but Sciurus are absent (Mallorca Island), cones were smaller as a result of relaxation of selection by Sciurus. However, cones on Mallorca had proportionally thicker scales in comparison to where both Sciurus and crossbills are absent (Ibiza Island), presumably as an adaptation against crossbill predation. Here crossbills specialize on Aleppo pine, have relatively large bills and have apparently coevolved in an arms race with Aleppo pine. These results suggest that Sciurus has influenced both the geographic selection mosaics for crossbills and conifers and the adaptive radiation of crossbills in Eurasia much like Tamiasciurus has done in the North America. [source] Fish functional design and swimming performanceJOURNAL OF FISH BIOLOGY, Issue 5 2004R. W. Blake Classifications of fish swimming are reviewed as a prelude to discussing functional design and performance in an ecological context. Webb (1984a, 1998) classified fishes based on body shape and locomotor mode into three basic categories: body and caudal fin (BCF) periodic, BCF transient (fast-starts, turns) and median and paired fin (MPF) swimmers. Swimming performance and functional design is discussed for each of these categories. Webb hypothesized that specialization in any given category would limit performance in any other. For example, routine MPF swimmers should be penalized in BCF transient (fast-start propulsion). Recent studies offer much support for Webb's construct but also suggest some necessary amendments. In particular, design and performance compromises for different swimming modes are associated with fish that employ the same propulsor for more than one task (coupled, e.g. the same propulsor for routine steady swimming and fast-starts). For example, pike (BCF transient specialist) achieve better acceleration performance than trout (generalist). Pike steady (BCF periodic) performance, however, is inferior to that of trout. Fish that employ different propulsors for different tasks (decoupled, e.g. MPF propulsion for low-speed routine swimming and BCF motions for fast-starts) do not show serious performance compromises. For example, certain MPF low-speed swimmers show comparable fast-start performance to BCF forms. Arguably, the evolution of decoupled locomotor systems was a major factor underlying the adaptive radiation of teleosts. Low-speed routine propulsion releases MPF swimmers from the morphological constraints imposed by streamlining allowing for a high degree of variability in form. This contrasts with BCF periodic swimming specialists where representatives of four vertebrate classes show evolutionary convergence on a single, optimal ,thunniform' design. However, recent experimental studies on the comparative performance of carangiform and thunniform swimmers contradict some of the predictions of hydromechanical models. This is addressed in regard to the swimming performance, energetics and muscle physiology of tuna. The concept of gait is reviewed in the context of coupled and decoupled locomotor systems. Biomimetic approaches to the development of Autonomous Underwater Vehicles have given a new context and impetus to research and this is discussed in relation to current views of fish functional design and swimming performance. Suggestions are made for possible future research directions. [source] |