Adaptive Advantage (adaptive + advantage)

Distribution by Scientific Domains
Distribution within Life Sciences

Selected Abstracts

Adaptive advantages of myrmecochory: the predator-avoidance hypothesis tested over a wide geographic range

ECOGRAPHY, Issue 5 2005
Antonio J. Manzaneda
The predator-avoidance hypothesis states that once released from the parent plant, myrmecochorous seeds are rapidly taken by ants to their nests, where they are protected from predators. Previous studies conducted to test this hypothesis have frequently neglected two major aspects necessary for its verification: 1) the influence of processes acting after the seed release and 2) the spatial evenness of such processes. Thus, large-scale variations in the mechanisms acting beyond seed release, and possibly influencing seed escape from predators, remain poorly documented. Here, we present the results of a post-dispersal seed-removal experiment on the myrmecochorous herb Helleborus foetidus, aimed at verifing the predator-avoidance hypothesis by considering two key post-release aspects of seed fate: seed destination (dispersed or nondispersed) and seed burial (buried or not buried). Experiments were performed in four different regions in the Iberian Peninsula. After three days of exposure of seeds to the main predator (fieldmice Apodemus sylvaticus), ca 30% of the seeds were removed. Seed destination affected the proportion of seeds escaping predation, but the sign, magnitude and statistical significance of the effect varied among the geographical regions. In the southern region (Cazorla), seeds dispersed in ant nests or intermediate destinations suffered scarcely any predation, but seeds under reproductive-age plants experienced losses ca 50%. Conversely, in the northern region (Caurel), seeds in nests suffered significantly greater losses than seeds under plants or intermediate destinations, suggesting that nests were especially unsafe destinations. Seed burial had a strong impact on seed escape from predators, and its effect was highly consistent among geographical regions. In view of the consistency of its effect at different spatial scales, seed burial was a more general mechanism for predation avoidance than seed relocation to ant nests, which was habitat- and/or ant-species-dependent. Our results thus only partially support the predator-avoidance hypothesis for the evolution of myrmecochory. [source]

Taxonomic diversity gradients through geological time

J. Alistair Crame
Abstract., There is evidence from the fossil record to suggest that latitudinal gradients in taxonomic diversity may be time-invariant features, although almost certainly not on the same scale as that seen at the present day. It is now apparent that both latitudinal and longitudinal gradients increased dramatically in strength through the Cenozoic era (i.e. the last 65 my) to become more pronounced today than at any time in the geological past. Present-day taxonomic diversity gradients, in both the marine and terrestrial realms, are underpinned by the tropical radiations of a comparatively small number of species-rich clades. Quite why these particular taxa proliferated through the Cenozoic is uncertain, but it could be that at least part of the explanation involves the phenomenon of evolutionary escalation. This is, in essence, a theory of biological diversification through evolutionary feedback mechanisms between predators and prey; first one develops an adaptive advantage, and then the other. However, there may also have been some form of extrinsic control on the process of tropical diversification, and this was most likely centred on the phenomenon of global climate change. This is especially so over the last 15 my Various Late Cenozoic (Neogene) vicariant events effectively partitioned the tropics into a series of high diversity centres, or foci. It has been suggested that, in the largest of these in the marine realm (the Indo-West Pacific or IWP centre), a critical patterns of islands acted as a template for rapid speciation during glacioeustatic sea level cycles. The same process occurred in the Atlantic, Caribbean and East Pacific (ACEP) centre, though on a lesser scale. Tropical terrestrial diversity may also have been promoted by rapid range expansions and contractions in concert with glacial cycles (a modified refugium hypothesis). We are beginning to appreciate that an integrated sequence of Neogene tectonic and climatic events greatly influenced the formation of contemporary taxonomic diversity patterns. [source]


EVOLUTION, Issue 4 2006
Michael J. Wade
Abstract We report the findings of our theoretical investigation of the effect of random genetic drift on the covariance of identity-by-descent (ibd) of nuclear and cytoplasmic genes. The covariance in ibd measures of the degree to which cyto-nuclear gene combinations are heritable, that is, transmitted together from parents to offspring. We show how the mating system affects the covariance of ibd, a potentially important aspect of host-pathogen or host-symbiont coevolution. The magnitude of this covariance influences the degree to which the evolution of apparently neutral cytoplasmic genes, often used in molecular phylogenetics, might be influenced by selection acting on unlinked nuclear genes. To the extent that cyto-nuclear gene combinations are inherited together, genomic conflict is mitigated and intergenomic transfer it facilitated, because genes in both organelle and nuclear genomes share the same evolutionary fate. The covariance of ibd also affects the rate at which cyto-nuclear epistatic variance is converted to additive variance necessary for a response to selection. We find that conversion is biased in species with separate sexes, so that the increment of additive variance added to the nuclear genome exceeds that added to the cytoplasmic genome. As a result, the host might have an adaptive advantage in a coevolutionary arms race with vertically (maternally) transmitted pathogens. Similarly, the nuclear genome could be a source of compensatory mutations for its organellar genomes, as occurs in cytoplasmic male sterility in some plant species. We also discuss the possibility that adaptive cytoplasmic elements, such as favorable mitochondrial mutations or endosymbionts (e.g., Wolbachia), have the potential to release heritable nuclear variation as they sweep through a host population, supporting the view that cytoplasmic introgression plays an important role in adaptation and speciation. [source]

Effects of decreasing soil water content on seminal lateral roots of young maize plants


Abstract Soil micropores that contain water at or below field capacity cannot be invaded by seminal or first-order lateral roots of maize plants because their root diameters are larger than 10 ,m. Hence, at soil-water levels below field capacity plant roots must establish a new pore system by displacement of soil particles in order to access soil water. We investigated how decreasing soil water content (SWC) influences growth and morphology of the root system of young maize plants. Plants were grown in rhizotrons 40,cm wide, 50,cm high, and approximately 0.7,cm thick. Five SWC treatments were established by addition of increasing amounts of water to soil and thorough mixing before filling the rhizotrons. No water was added to treatments 1,4 throughout the experiment. Treatment 5 was watered frequently throughout the experiment to serve as a control. Seminal-root length and SWC in soil layers 0,10, 10,20, 20,30, 30,40, and 40,50,cm were measured at intervals of 2,3 d on scanner images by image analysis. At 15 d after planting, for treatments 1,4 shoot dry weight and total root length were directly related to the amount of water added to the soil, and for treatments 4 and 5, total root length and shoot dry weights were similar. Length of seminal roots visible at the transparent surface of the rhizotron for all treatments was highest in the uppermost soil layer and decreased with distance from the soil surface. For all layers, seminal-root elongation rate was at maximum above a SWC of 0.17,cm3,cm,3, corresponding to a matric potential of ,30 kPa. With decreasing SWC, elongation rate decreased, and 20% of maximum seminal root elongation rate was observed below SWC of 0.05,cm3,cm,3. After destructive harvest for treatment 1,4, number of (root-) tips per unit length of seminal root was found uninfluenced over the range of initial SWC from 0.10 to 0.26,cm3,cm,3. However, initial SWC close to the permanent wilting point strongly increased number of tips. Average root length of first-order lateral (FOL) roots increased as initial SWC increased, and the highest length was found for the frequently watered treatment 5. The results of the study suggest that the ability to produce new FOL roots across a wide range of SWC may give maize an adaptive advantage, because FOL root growth can rapidly adapt to changing soil moisture conditions. [source]

A novel substitution I381V in the sterol 14,-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides

SUMMARY The recent reduction in the efficacy of azole fungicides in controlling Septoria leaf blotch of wheat, caused by Mycosphaerella graminicola, has prompted concerns over possible development of resistance, particularly in light of the recent emergence of widespread resistance to quinone outside inhibitors (QoIs). We have recently implicated alterations in the target-encoding sterol 14,-demethylase protein (CYP51), and over-expression of genes encoding efflux pumps, in reducing sensitivity to the azole class of sterol demethylation inhibitors (DMIs) in M. graminicola. Here we report on the prevalence and selection of two CYP51 alterations, substitution I381V and deletion of codons 459 and 460 (,Y459/G460), in populations of M. graminicola. Neither alteration has previously been identified in human or plant pathogenic fungi resistant to azoles. The presence of ,Y459/G460 showed a continuous distribution of EC50 values across isolates with either I381 or V381, and had no measurable effect on azole sensitivity. Data linking fungicide sensitivity with the presence of I381V in M. graminicola show for the first time that a particular CYP51 alteration is differentially selected by different azoles in field populations of a plant pathogen. Substitution I381V although not an absolute requirement for reduced azole sensitivity, is selected by tebuconazole and difenoconazole treatment, suggesting an adaptive advantage in the presence of these two compounds. Prochloraz treatments appeared to select negatively for I381V, whereas other azole treatments did not or only weakly impacted on the prevalence of this substitution. These findings suggest treatments with different members of the azole class of fungicides could offer a resistance management strategy. [source]

Phototropism: A "Simple" Physiological Response Modulated by Multiple Interacting Photosensory-response Pathways ,

Emmanuel Liscum
ABSTRACT Phototropism is the process by which plants reorient growth of various organs, most notably stems, in response to lateral differences in light quantity and/or quality. The ubiquitous nature of the phototropic response in the plant kingdom implies that it provides some adaptive evolutionary advantage. Upon visual inspection it is tempting to surmise that phototropic curvatures result from a relatively simple growth response to a directional stimulus. However, detailed photophysiological, and more recently genetic and molecular, studies have demonstrated that phototropism is in fact regulated by complex interactions among several photosensory systems. At least two receptors, phototropin and a presently unidentified receptor, appear to mediate the primary photoreception of directional blue light cues in dark-grown plants. PhyB may also function as a primary receptor to detect lateral increases in far-red light in neighbor-avoidance responses of light-grown plants. Phytochromes (phyA and phyB at a minimum) also appear to function as secondary receptors to regulate adaptation processes that ultimately modulate the magnitude of curvature induced by primary photoperception. As a result of the interactions of these multiple photosensory systems plants are able to maximize the adaptive advantage of the phototropic response in ever changing light environments. [source]

The FliK protein and flagellar hook-length control

Richard C. Waters
Abstract The bacterial flagellum is a highly complex prokaryotic organelle. It is the motor that drives bacterial motility, and despite the large amount of energy required to make and operate flagella, motile organisms have a strong adaptive advantage. Flagellar biogenesis is both complex and highly coordinated and it typically involves at least three two-component systems. Part of the flagellum is a type III secretion system, and it is via this structure that flagellar components are exported. The assembly of a flagellum occurs in a number of stages, and the "checkpoint control" protein FliK functions in this process by detecting when the flagellar hook substructure has reached its optimal length. FliK then terminates hook export and assembly and transmits a signal to begin filament export, the final stage in flagellar biosynthesis. As yet the exact mechanism of how FliK achieves this is not known. Here we review what is known of the FliK protein and discuss the evidence for and against the various hypotheses that have been proposed in recent years to explain how FliK controls hook length, FliK as a molecular ruler, the measuring cup theory, the role of the FliK N terminus, the infrequent molecular ruler theory, and the molecular clock theory. [source]


EVOLUTION, Issue 6 2008
Joep M. S. Burger
Learning ability can be substantially improved by artificial selection in animals ranging from Drosophila to rats. Thus these species have not used their evolutionary potential with respect to learning ability, despite intuitively expected and experimentally demonstrated adaptive advantages of learning. This suggests that learning is costly, but this notion has rarely been tested. Here we report correlated responses of life-history traits to selection for improved learning in Drosophila melanogaster. Replicate populations selected for improved learning lived on average 15% shorter than the corresponding unselected control populations. They also showed a minor reduction in fecundity late in life and possibly a minor increase in dry adult mass. Selection for improved learning had no effect on egg-to-adult viability, development rate, or desiccation resistance. Because shortened longevity was the strongest correlated response to selection for improved learning, we also measured learning ability in another set of replicate populations that had been selected for extended longevity. In a classical olfactory conditioning assay, these long-lived flies showed an almost 40% reduction in learning ability early in life. This effect disappeared with age. Our results suggest a symmetrical evolutionary trade-off between learning ability and longevity in Drosophila. [source]

Spatial partitioning and asymmetric hybridization among sympatric coastal steelhead trout (Oncorhynchus mykiss irideus), coastal cutthroat trout (O. clarki clarki) and interspecific hybrids

Abstract Hybridization between sympatric species provides unique opportunities to examine the contrast between mechanisms that promote hybridization and maintain species integrity. We surveyed hybridization between sympatric coastal steelhead (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki) from two streams in Washington State, Olsen Creek (256 individuals sampled) and Jansen Creek (431 individuals sampled), over a 3-year period. We applied 11 O. mykiss -specific nuclear markers, 11 O. c. clarki -specific nuclear markers and a mitochondrial DNA marker to assess spatial partitioning among species and hybrids and determine the directionality of hybridization. F1 and post-F1 hybrids, respectively, composed an average of 1.2% and 33.6% of the population sampled in Jansen Creek, and 5.9% and 30.4% of the population sampled in Olsen Creek. A modest level of habitat partitioning among species and hybrids was detected. Mitochondrial DNA analysis indicated that all F1 hybrids (15 from Olsen Creek and five from Jansen Creek) arose from matings between steelhead females and cutthroat males implicating a sneak spawning behaviour by cutthroat males. First-generation cutthroat backcrosses contained O. c. clarki mtDNA more often than expected suggesting natural selection against F1 hybrids. More hybrids were backcrossed toward cutthroat than steelhead and our results indicate recurrent hybridization within these creeks. Age analysis demonstrated that hybrids were between 1 and 4 years old. These results suggest that within sympatric salmonid hybrid zones, exogenous processes (environmentally dependent factors) help to maintain the distinction between parental types through reduced fitness of hybrids within parental environments while divergent natural selection promotes parental types through distinct adaptive advantages of parental phenotypes. [source]

How do UV Photomorphogenic Responses Confer Water Stress Tolerance?,,

Dennis C. Gitz
ABSTRACT Although ultraviolet-B (UV-B) radiation is potentially harmful, it is an important component of terrestrial radiation to which plants have been exposed since invading land. Since then, plants have evolved mechanisms to avoid and repair UV radiation damage; therefore, it is not surprising that photomorphogenic responses to UV-B are often assumed to be adaptations to harmful radiation. This presupposes that the function of the observed responses is to prevent UV damage. It has been hypothesized that, as with blue light, UV-B provides a signal important for normal plant development and might be perceived within developing plants through nondestructive processes, perhaps through UV-specific signal perception mechanisms. UV signal perception can lead to photomorphogenic responses that may confer adaptive advantages under conditions associated with high-light environments, such as water stress. Plant responses to UV radiation in this regard include changes in leaf area, leaf thickness, stomatal density, photosynthetic pigment production and altered stem elongation and branching patterns. Such responses may lead to altered transpiration rates and water-use efficiencies. For example, we found that the cumulative effect of ambient UV-B radiation upon stomatal density and conductance can lead to altered water-use efficiencies. In field settings, UV might more properly be viewed as a photomorphogenic signal than as a stressor. Hence, it might be insufficient to attempt to fully evaluate the adaptive roles of plant responses to UV-B cues upon stress tolerance by the simultaneous application of UV and drought stress during development. We propose that rather than examining a plant's response to combinations of stressors one might also examine how a plant's response to UV induces tolerance to subsequently applied stresses. [source]

Developmental plasticity in fat patterning of Ache children in response to variation in interbirth intervals: A preliminary test of the roles of external environment and maternal reproductive strategies

Jack Baker
A firm link between small size at birth and later more centralized fat patterning has been established in previous research. Relationships between shortened interbirth intervals and small size at birth suggest that maternal energetic prioritization may be an important, but unexplored determinant of offspring fat patterning. Potential adaptive advantages to centralized fat storage (Baker et al., 2008: In: Trevathan W, McKenna J, Smith EO, editors. Evolutionary Medicine and Health: New Perspectives. New York: Oxford) suggest that relationships with interbirth intervals may reflect adaptive responses to variation in patterns of maternal reproductive effort. Kuzawa (2005: Am J Hum Biol 17:5,21; 2008: In: Trevathan W, McKenna J, Smith EO, editors. Evolutionary Medicine and Health: New Perspectives. New York: Oxford) has argued that maternal mediation of the energetic quality of the environment is a necessary component of developmental plasticity models invoking predictive adaptive responses (Gluckman and Hanson 2004: Trends Endocrinol Metab 15:183,187). This study tested the general hypothesis that shortened interbirth intervals would predict more centralized fat patterning in offspring. If long-term maternally mediated signals are important determinants of offspring responses, then we expected to observe a relationship between the average interbirth interval of mothers and offspring adiposity, with no relationship with the preceding interval. Such a finding would suggest that maternal, endogenous resource allocation decisions are related to offspring physiology in a manner consistent with Kuzawa's description. We observed exactly such a relationship among the Ache of Paraguay, suggesting that maternally mediated in utero signals of postnatal environments may be important determinants of later physiology. The implications of these findings are reviewed in light of life history and developmental plasticity theories and ourability to generalize the results to other populations. Recommendations for further empirical research are briefly summarized. Am. J. Hum. Biol., 2009. 2008 Wiley-Liss, Inc. [source]

Systemic plant signal triggers genome instability

Jody Filkowski
Summary Previously, we have shown that infection of tobacco plants with a viral pathogen triggers local and systemic induction of homologous recombination (HR). Here, we have tested the hypothesis of whether free radicals are potentially involved in the induction of the systemic effect. We report a significant induction of HR in tobacco plants treated with radical-generating agents, UVC or rose Bengal (RB). Importantly, the recombination increase was observed in local (treated) as well as systemic (non-treated) tissue. The systemic increase in recombination implies the existence of a signal that is transmitted to non-treated tissue. Several sets of grafting experiments proved the generation of said signal by both RB and UVC exposure. A statistically significant increase in HR was observed in tissue that received a systemic signal via a grafted leaf. Similar data were obtained from transgenic plants naphthalene degrading salicylate 1-hydroxylase (NahG) unable to accumulate salicylic acid (SA). Interestingly, pre-treatment of plants with the radical-scavenging compound N -acetyl- l -cysteine (NAC) led to a significantly lower recombination increase upon grafting after treatment with UVC and RB. Moreover, leaves taken for grafting from NAC-pre-treated plants exhibited a lower level of oxidized organic compounds. Our data suggest the involvement of free radical production in either generation or maintenance of the recombination signal. We discuss potential mechanisms for generation of the signal and possible adaptive advantages of enhanced genomic flexibility following exposure to DNA-damaging agents. [source]