Cortical Processing (cortical + processing)

Distribution by Scientific Domains


Selected Abstracts


Cortical processing of near-threshold tactile stimuli: An MEG study

PSYCHOPHYSIOLOGY, Issue 3 2010
Anja Wühle
Abstract In the present study we tested the applicability of a paired-stimulus paradigm for the investigation of near-threshold (NT) stimulus processing in the somatosensory system using magnetoencephalography. Cortical processing of the NT stimuli was studied indirectly by investigating the impact of NT stimuli on the source activity of succeeding suprathreshold test stimuli. We hypothesized that cortical responses evoked by test stimuli are reduced due to the preactivation of the same finger representation by the preceding NT stimulus. We observed attenuation of the magnetic responses in the secondary somatosensory (SII) cortex, with stronger decreases for perceived than for missed NT stimuli. Our data suggest that processing in the primary somatosensory cortex including recovery lasts for <200 ms. Conversely, the occupancy of SII lasts ,500 ms, which points to its role in temporal integration and conscious perception of sensory input. [source]


Cortical auditory dysfunction in benign rolandic epilepsy

EPILEPSIA, Issue 6 2008
Dana F. Boatman
Summary Purpose: To evaluate cortical auditory function, including speech recognition, in children with benign rolandic epilepsy (BRE). Methods: Fourteen children, seven patients with BRE and seven matched controls, underwent audiometric and behavioral testing, simultaneous EEG recordings, and auditory-evoked potential recordings with speech and tones. Speech recognition was tested under multiple listening conditions. Results: All participants demonstrated normal speech recognition abilities in quiet, as well as normal peripheral and subcortical auditory function. BRE patients performed significantly worse than controls when speech recognition was tested under adverse listening conditions, including background noise. Five BRE patients who were impaired on two or more tests had centrotemporal spiking on awake EEG. There were no significant group differences in the latency or amplitude of early N100 cortical responses to speech or tones. Conversely, the mismatch negativity, a preattentive index of cortical processing that is elicited passively, was absent or prolonged for speech, but not tones, in BRE patients as compared to controls. Discussion: Children with BRE demonstrated specific speech recognition impairments. Our evoked potential findings indicate that these behavioral impairments reflect dysfunction of nonprimary auditory cortex and cannot be attributed solely to attention difficulties. A possible association between auditory impairments and centrotemporal spiking (>1/min) on awake EEG was identified. The pattern of speech recognition impairments observed is a known risk factor for academic difficulties in school-age children. Our results underscore the importance of comprehensive auditory testing, using behavioral and electrophysiological measures, in children with BRE. [source]


Spectro-temporal sound density-dependent long-term adaptation in cat primary auditory cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
Boris Gourévitch
Abstract Sensory systems use adaptive strategies to code for the changing environment on different time scales. Short-term adaptation (up to 100 ms) reflects mostly synaptic suppression mechanisms after response to a stimulus. Long-term adaptation (up to a few seconds) is reflected in the habituation of neuronal responses to constant stimuli. Very long-term adaptation (several weeks) can lead to plastic changes in the cortex, most often facilitated during early development, by stimulus relevance or by behavioral states such as attention. In this study, we show that long-term adaptation with a time course of tens of minutes is detectable in anesthetized adult cat auditory cortex after a few minutes of listening to random-frequency tone pips. After the initial post-onset suppression, a slow recovery of the neuronal response strength to tones at or near their best frequency was observed for low-rate random sounds (four pips per octave per second) during stimulation. The firing rate at the end of stimulation (15 min) reached levels close to that observed during the initial onset response. The effect, visible for both spikes and, to a smaller extent, local field potentials, decreased with increasing spectro-temporal density of the sound. The spectro-temporal density of sound may therefore be of particular relevance in cortical processing. Our findings suggest that low stimulus rates may produce a specific acoustic environment that shapes the primary auditory cortex through very different processing than for spectro-temporally more dense and complex sounds. [source]


Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2005
Céline Cappe
Abstract While multisensory integration is thought to occur in higher hierarchical cortical areas, recent studies in man and monkey have revealed plurisensory modulations of activity in areas previously thought to be unimodal. To determine the cortical network involved in multisensory interactions, we performed multiple injections of different retrograde tracers in unimodal auditory (core), somatosensory (1/3b) and visual (V2 and MT) cortical areas of the marmoset. We found three types of heteromodal connections linking unimodal sensory areas. Visuo-somatosensory projections were observed originating from visual areas [probably the ventral and dorsal fundus of the superior temporal area (FSTv and FSTd), and middle temporal crescent (MTc)] toward areas 1/3b. Somatosensory projections to the auditory cortex were present from S2 and the anterior bank of the lateral sulcus. Finally, a visuo-auditory projection arises from an area anterior to the superior temporal sulcus (STS) toward the auditory core. Injections in different sensory regions allow us to define the frontal convexity and the temporal opercular caudal cortex as putative polysensory areas. A quantitative analysis of the laminar distribution of projecting neurons showed that heteromodal connections could be either feedback or feedforward. Taken together, our results provide the anatomical pathway for multisensory integration at low levels of information processing in the primate and argue against a strict hierarchical model. [source]


Transcranial direct current stimulation disrupts tactile perception

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2004
Andreas Rogalewski
Abstract The excitability of the cerebral cortex can be modulated by various transcranial stimulation techniques. Transcranial direct current stimulation (tDCS) offers the advantage of portable equipment and could, therefore, be used for ambulatory modulation of brain excitability. However, modulation of cortical excitability by tDCS has so far mostly been shown by indirect measures. Therefore, we examined whether tDCS has a direct behavioral/perceptional effect. We compared tactile discrimination of vibratory stimuli to the left ring finger prior to, during and after tDCS applied for 7 min at 1-mA current intensity in 13 subjects. Stimulation was pseudorandomized into cathodal, anodal and sham conditions in a within-subject design. The active electrode was placed over the corresponding somatosensory cortex at C4 according to the 10,20 EEG system and the reference electrode at the forehead above the contralateral orbita. Cathodal stimulation compared with sham induced a prolonged decrease of tactile discrimination, while anodal and sham stimulation did not. Thus, cortical processing can be modulated in a behaviorally/perceptually meaningful way by weak transcranial current stimulation applied through portable technology. This finding offers a new perspective for the treatment of conditions characterized by alterations of cortical excitability. [source]


Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task

HUMAN BRAIN MAPPING, Issue 5 2007
John R. Monterosso
Abstract Relative to individuals who do not have addictive disorders, drug abusers exhibit greater devaluation of rewards as a function of their delay ("delay discounting"). The present study sought to extend this finding to methamphetamine (MA) abusers and to help understand its neural basis. MA abusers (n = 12) and control subjects who did not use illicit drugs (n = 17) participated in tests of delay discounting with hypothetical money rewards. We then used a derived estimate of each individual's delay discounting to generate a functional magnetic resonance imaging probe task consisting of three conditions: "hard choices," requiring selections between "smaller, sooner" and "larger, later" alternatives that were similarly valued given the individual's delay discounting; "easy choices," in which alternatives differed dramatically in value; and a "no choice" control condition. MA abusers exhibited more delay discounting than control subjects (P < 0.05). Across groups, the "hard choice > no choice" contrast revealed significant effects in the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex, and areas surrounding the intraparietal sulcus (IPS). With group comparisons limited to these clusters, the "hard choice > easy choice" contrast indicated significant group differences in task-related activity within the left DLPFC and right IPS; qualitatively similar nonsignificant effects were present in the other clusters tested. Whereas control subjects showed less recruitment associated with easy than with hard choices, MA abusers generally did not. Correlational analysis did not indicate a relationship between this anomaly in frontoparietal recruitment and greater degree of delay discounting exhibited by MA abusers. Therefore, while apparent inefficiency of cortical processing related to decision-making in MA abusers may contribute to the neural basis of enhanced delay discounting by this population, other factors remain to be identified. Hum. Brain Mapp, 2007. © 2006 Wiley-Liss, Inc. [source]


Human cortical processing of colour and pattern

HUMAN BRAIN MAPPING, Issue 4 2001
Nicholas A. Barrett
Abstract The present study investigates human visual processing of simple two-colour patterns using a delayed match to sample paradigm with positron emission tomography (PET). This study is unique in that we specifically designed the visual stimuli to be the same for both pattern and colour recognition with all patterns being abstract shapes not easily verbally coded composed of two-colour combinations. We did this to explore those brain regions required for both colour and pattern processing and to separate those areas of activation required for one or the other. We found that both tasks activated similar occipital regions, the major difference being more extensive activation in pattern recognition. A right-sided network that involved the inferior parietal lobule, the head of the caudate nucleus, and the pulvinar nucleus of the thalamus was common to both paradigms. Pattern recognition also activated the left temporal pole and right lateral orbital gyrus, whereas colour recognition activated the left fusiform gyrus and several right frontal regions. Hum. Brain Mapping 13:213,225, 2001. © 2001 Wiley-Liss, Inc. [source]


Delay Discounting Behavior and White Matter Microstructure Abnormalities in Youth With a Family History of Alcoholism

ALCOHOLISM, Issue 9 2010
Megan M. Herting
Background:, Youth with family history of alcohol abuse have a greater risk of developing an alcohol use disorder (AUD). Brain and behavior differences may underlie this increased vulnerability. The current study examined delay discounting behavior and white matter microstructure in youth at high risk for alcohol abuse, as determined by a family history of alcoholism (FH+), and youth without such family history (FH,). Methods:, Thirty-three healthy youth (FH+ = 15, FH, = 18), ages 11 to 15 years, completed a delay discounting task and underwent diffusion tensor imaging. Tract-based spatial statistics (Smith et al., 2006), as well as follow-up region-of-interest analyses, were performed to compare fractional anisotropy (FA) between FH+ and FH, youth. Results:, FH+ youth showed a trend toward increased discounting behavior and had significantly slower reaction times (RTs) on the delay discounting paradigm compared to FH, youth. Group differences in FA were seen in several white matter tracts. Furthermore, lower FA in the left inferior longitudinal fasciculus and the right optic radiation statistically mediated the relationship between FH status and slower RTs on the delay discounting task. Conclusions:, Youth with a family history of substance abuse have disrupted white matter microstructure, which likely contributes to less efficient cortical processing and may act as an intrinsic risk factor contributing to an increased susceptibility of developing AUD. In addition, FHP youth showed a trend toward greater impulsive decision making, possibly representing an inherent personal characteristic that may facilitate substance use onset and abuse in high-risk youth. [source]