Home About us Contact | |||
Cortical Neuronal Cultures (cortical + neuronal_culture)
Selected AbstractsDifferential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injuryGLIA, Issue 3 2008Aaron Y. Lai Abstract Microglial activation has been reported to promote neurotoxicity and also neuroprotective effects. A possible contributor to this dichotomy of responses may be the degree to which proximal neurons are injured. The aim of this study was to determine whether varying the severity of neuronal injury influenced whether microglia were neuroprotective or neurotoxic. We exposed cortical neuronal cultures to varying degrees of hypoxia thereby generating mild (<20% death, 30min hypoxia), moderate (40,60% death, 2 h hypoxia), or severe (>70% death, 6 h hypoxia) injuries. Twenty-four hours after hypoxia, the media from the neuronal cultures was collected and incubated with primary microglial cultures for 24 h. Results showed that the classic microglial proinflammatory mediators including inducible nitric oxide synthase, tumor necrosis factor ,, and interleukin-1-, were upregulated only in response to mild neuronal injuries, while the trophic microglial effectors brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor were upregulated in response to all degrees of neuronal injury. Microglia stimulated with media from damaged neurons were co-cultured with hypoxic neurons. Microglia stimulated by moderate, but not mild or severe damage were neuroprotective in these co-cultures. We also showed that the severity-dependent phenomenon was not related to autocrine microglial signaling and was dependent on the neurotransmitters released by neurons after injury, namely glutamate and adenosine 5,-triphosphate. Together our results show that severity of neuronal injury is an important factor in determining microglial release of "toxic" versus "protective" effectors and the resulting neurotoxicity versus neuroprotection. © 2007 Wiley-Liss, Inc. [source] Dexmedetomidine provides cortical neuroprotection: impact on anaesthetic-induced neuroapoptosis in the rat developing brainACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2010R. D. SANDERS Background: Recent evidence has demonstrated the anti-apoptotic of dexmedetomidine in different brain injury models. Herein, we investigated whether dexmedetomidine could directly protect against cortical injury in vitro and in vivo. Methods: Apoptosis was induced by staurosporine or wortmannin treatment in cortical neuronal cultures in vitro or by 6 h of isoflurane (0.75%) administration to post-natal day 7 rat pups in vivo. Dexmedetomidine was then applied in escalating doses to assess the neuroprotective potential of this agent. Cell survival was quantified using an MTT assay in vitro and in vivo apoptosis was assessed using cleaved caspase-3 immunohistochemistry. Cortical Western blots were conducted for the cellular survival proteins Bcl-2 and phosphorylated extracellular signal-regulated protein kinase (pERK)1 and 2. Results: In vitro dexmedetomidine dose-dependently prevented both staurosporine- and wortmannin-induced injury in cortical neuronal cultures, indicating that dexmedetomidine can prevent apoptosis when applied directly. In vivo isoflurane induced cortical neuroapoptosis compared with air (327±80 vs. 34±9 caspase-3-positive neurons; P<0.05). Dexmedetomidine inhibited isoflurane-induced caspase-3 expression (P<0.05), although the protection achieved did not completely attenuate the isoflurane injury (P<0.05 vs. air). Isoflurane treatment decreased Bcl-2 and pERK protein expression relative to air, an effect reversed by dexmedetomidine treatment. Conclusions: Dexmedetomidine prevents cortical apoptosis in vitro and in vivo. However, using higher doses of dexmedetomidine does not further increase protection against isoflurane injury in the cortex than previously observed. [source] Specific interaction between Sam68 and neuronal mRNAs: Implication for the activity-dependent biosynthesis of elongation factor eEF1AJOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2009Julien Grange Abstract In cultured hippocampal neurons and in adult brain, the splicing regulatory protein Sam68 is partially relocated to the somatodendritic domain and associates with dendritic polysomes. Transfer to the dendrites is activity-dependent. We have investigated the repertoire of neuronal mRNAs to which Sam68 binds in vivo. By using coimmunoprecipitation and microarray screening techniques, Sam68 was found to associate with a number of plasticity-related mRNA species, including Eef1a1, an activity-responsive mRNA coding for translation elongation factor eEF1A. In cortical neuronal cultures, translation of the Eef1a1 mRNA was strongly induced by neuronal depolarisation and correlated with enhanced association of Sam68 with polysomal mRNAs. The possible function of Sam68 in Eef1a1 mRNA utilization was studied by expressing a dominant-negative, cytoplasmic Sam68 mutant (GFP-Sam68,C) in cultured hippocampal neurons. The level of eEF1A was lower in neurons expressing GFP-Sam68,C than in control neurons, supporting the proposal that endogenous Sam68 may contribute to the translational efficiency of the Eef1a1 mRNA. These findings are discussed in the light of the complex, potentially crucial regulation of eEF1A biosynthesis during long-term synaptic change. © 2008 Wiley-Liss, Inc. [source] ,-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3,JOURNAL OF NEUROSCIENCE RESEARCH, Issue 5 2008Takaaki Nishimoto Abstract Preconditioning of sublethal ischemia exhibits neuroprotection against subsequent ischemia-induced neuronal death. It has been indicated that glutamate, an excitatory amino acid, is involved in the pathogenesis of ischemia-induced neuronal death or neurodegeneration. To elucidate whether prestimulation of glutamate receptor could counter ischemia-induced neuronal death or neurodegeneration, we examined the effect of ,-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA), an ionotropic subtype of glutamate receptor, on excess glutamate-induced excitotoxicity using primary cortical neuronal cultures. We found that AMPA exerted a neuroprotective effect in a time- and concentration-dependent manner. A blocker of phosphatidylinositol-3 kinase (PI3K), LY294002 (10 ,M), significantly attenuated AMPA-induced protection. In addition, Ser473 of Akt/PKB, a downstream target of PI3K, was phosphorylated by AMPA administration (10 ,M). Glycogen synthase kinase 3, (GSK3,), which has been reported to be inactivated by Akt, was phosphorylated at Ser9 by AMPA. Ser9-phosphorylated GSK3, or inactivated form would be a key molecule for neuroprotection, insofar as lithium chloride (100 ,M) and SB216763 (10 ,M), inhibitors of GSK3,, also induced phosphorylation of GSK3, at Ser9 and exerted neuroprotection, respectively. Glutamate (100 ,M) increased cleaved caspase-3, an apoptosis-related cysteine protease, and caspase-3 inhibitor (Ac-DEVD-CHO; 1 ,M) blocked glutamate-induced excitotoxicity in our culture. AMPA (10 ,M, 24 hr) and SB216763 (10 ,M) prominently decreased glutamate-induced caspase-3 cleavage. These findings suggest that AMPA activates PI3K-Akt and subsequently inhibits GSK3, and that inactivated GSK3, attenuates glutamate-induced caspase-3 cleavage and neurotoxicity. © 2007 Wiley-Liss, Inc. [source] PTEN, Akt, and GSK3, signalling in rat primary cortical neuronal cultures following tumor necrosis factor-, and trans-4-hydroxy-2-nonenal treatmentsJOURNAL OF NEUROSCIENCE RESEARCH, Issue 3 2006A. Rickle Abstract PTEN is a dual phosphatase that negatively regulates the phosphatidylinositol 3-kinase (PI3K)/Akt signalling pathway important for cell survival. We determined effects of the inflammation and oxidative stresses of tumor necrosis factor-, (TNF,) and trans-4-hydroxy-2-nonenal (HNE), respectively, on PTEN, Akt, and GSK3, signalling in rat primary cortical neurons. The inhibitors bisperoxovanadium [bpV(Pic)] and LY294002 were also used to determine PTEN and PI3K involvement in TNF, and HNE modulation of neuronal cell death. PTEN inhibition with bpV(Pic) alone did not affect Ser473Akt or Ser9GSK3, phosphorylation. Instead, effects of this inhibitor were manifest when it was used together with TNF, and to a lesser extent with HNE. TNF, together with PTEN inhibition increased phosphorylation of Ser473Akt and Ser9GSK3,. TNF, and HNE both gave decreased numbers of viable and increased numbers of early apoptotic neurons. PTEN inhibition partially reversed the toxic effect of TNF, as shown by an increased number of viable and a decreased number of early apoptotic neurons. All effects were reversed by PI3K inhibition. HNE together with inhibition of PTEN gave increased Ser473Akt but not Ser9GSK3, phosphorylation and no effects on the number of viable or early apoptotic cells. In conclusion, PTEN inhibition gives a mild reversal of TNF,- but not HNE-induced cell death via the PI3K pathway. © 2006 Wiley-Liss, Inc. [source] Excitotoxicity-induced endocytosis confers drug targeting in cerebral ischemia,ANNALS OF NEUROLOGY, Issue 3 2009Anne Vaslin MSc Objective Targeting neuroprotectants specifically to the cells that need them is a major goal in biomedical research. Many peptidic protectants contain an active sequence linked to a carrier such as the transactivator of transcription (TAT) transduction sequence, and here we test the hypothesis that TAT-linked peptides are selectively endocytosed into neurons stressed by excitotoxicity and focal cerebral ischemia. Methods In vivo experiments involved intracerebroventricular injection of TAT peptides or conventional tracers (peroxidase, fluorescein isothiocyanate-dextran) in young rats exposed to occlusion of the middle cerebral artery at postnatal day 12. Cellular mechanisms of uptake were analyzed in dissociated cortical neuronal cultures. Results In both models, all tracers were taken up selectively into stressed neurons by endocytosis. In the in vivo model, this was neuron specific and limited to the ischemic area, where the neurons displayed enhanced immunolabeling for early endosomal antigen-1 and clathrin. The highly efficient uptake of TAT peptides occurred by the same selective mechanism as for conventional tracers. All tracers were targeted to the nucleus and cytoplasm of neurons that appeared viable, although ultimately destined to die. In dissociated cortical neuronal cultures, an excitotoxic dose of N -methyl- D -aspartate induced a similar endocytosis. It was 100 times more efficient with TAT peptides than with dextran, because the former bound to heparan sulfate proteoglycans at the cell surface, but it depended on dynamin and clathrin in both cases. Interpretation Excitotoxicity-induced endocytosis is the main entry route for protective TAT peptides and targets selectively the neurons that need to be protected. Ann Neurol 2009;65:337,347 [source] |