Cortical Circuits (cortical + circuit)

Distribution by Scientific Domains


Selected Abstracts


Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
Mika Yoshida
Abstract Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in the developing mammalian cerebral cortex, however, few studies have reported its neurobiological functions during development. In this study, by means of whole-cell patch-clamp recordings, we examined the effects of taurine on chloride channel receptors in neocortical neurons from early to late postnatal stages, which cover a critical period in cortical circuit formation. We show here that taurine activates chloride channels in cortical neurons throughout the postnatal stages examined (from postnatal day 2 to day 36). The physiological effects of taurine changed from excitatory to inhibitory due to variations in the intracellular Cl, concentration during development. An antagonist blocking analysis also demonstrated a developmental shift in the receptor target of taurine, from glycine receptors to GABAA receptors. Taken together, these results may reflect genetically programmed, bidirectional functions of taurine. At the early developmental stage, taurine acting on glycine receptors would serve to promote cortical circuit formation. As cortical circuit has to be regulated in the later stages, taurine would serve as a safeguard against hyperexcitable circuit. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 166,175, 2004 [source]


Afferent-induced facilitation of primary motor cortex excitability in the region controlling hand muscles in humans

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2009
H. Devanne
Abstract Sensory inputs from cutaneous and limb receptors are known to influence motor cortex network excitability. Although most recent studies have focused on the inhibitory influences of afferent inputs on arm motor responses evoked by transcranial magnetic stimulation (TMS), facilitatory effects are rarely considered. In the present work, we sought to establish how proprioceptive sensory inputs modulate the excitability of the primary motor cortex region controlling certain hand and wrist muscles. Suprathreshold TMS pulses were preceded either by median nerve stimulation (MNS) or index finger stimulation with interstimulus intervals (ISIs) ranging from 20 to 200 ms (with particular focus on 40,80 ms). Motor-evoked potentials recorded in the abductor pollicis brevis (APB), first dorsalis interosseus and extensor carpi radialis muscles were strongly facilitated (by up to 150%) by MNS with ISIs of around 60 ms, whereas digit stimulation had only a weak effect. When MNS was delivered at the interval that evoked the optimal facilitatory effect, the H-reflex amplitude remained unchanged and APB motor responses evoked with transcranial electric stimulation were not increased as compared with TMS. Afferent-induced facilitation and short-latency intracortical inhibition (SICI) and intracortical facilitation (ICF) mechanisms are likely to interact in cortical circuits, as suggested by the strong facilitation observed when MNS was delivered concurrently with ICF and the reduction of SICI following MNS. We conclude that afferent-induced facilitation is a mechanism which probably involves muscle spindle afferents and should be considered when studying sensorimotor integration mechanisms in healthy and disease situations. [source]


Differences between the effects of three plasticity inducing protocols on the organization of the human motor cortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006
Karin Rosenkranz
Abstract Several experimental protocols induce lasting changes in the excitability of motor cortex. Some involve direct cortical stimulation, others activate the somatosensory system and some combine motor and sensory stimulation. The effects usually are measured as changes in amplitude of the motor-evoked-potential (MEP) or short-interval intracortical inhibition (SICI) elicited by a single or paired pulses of transcranial magnetic stimulation (TMS). Recent work has also tested sensorimotor organization within the motor cortex by recording MEPs and SICI during short periods of vibration applied to single intrinsic hand muscles. Here sensorimotor organization is focal: MEPs increase and SICI decreases in the vibrated muscle, whilst the opposite occurs in neighbouring muscles. In six volunteers we compared the after effects of three protocols that lead to lasting changes in cortical excitability: (i) paired associative stimulation (PAS) between a TMS pulse and an electrical stimulus to the median nerve; (ii) motor practice of rapid thumb abduction; and (iii) sensory input produced by semicontinuous muscle vibration, on MEPs and SICI at rest and on the sensorimotor organization. PAS increased MEP amplitudes, whereas vibration changed sensorimotor organization. Motor practice had a dual effect and increased MEPs as well as affecting sensorimotor organization. The implication is that different protocols target different sets of cortical circuits. We speculate that protocols that involve repeated activation of motor cortical output lead to lasting changes in efficacy of synaptic connections in output circuits, whereas protocols that emphasize sensory inputs affect the strength of sensory inputs to motor circuits. [source]


Innervation of interneurons immunoreactive for VIP by intrinsically bursting pyramidal cells and fast-spiking interneurons in infragranular layers of juvenile rat neocortex

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002
Jochen F. Staiger
Abstract Cortical columns contain specific neuronal populations with characteristic sets of connections. This wiring forms the structural basis of dynamic information processing. However, at the single-cell level little is known about specific connectivity patterns. We performed experiments in infragranular layers (V and VI) of rat somatosensory cortex, to clarify further the input patterns of inhibitory interneurons immunoreactive (ir) for vasoactive intestinal polypeptide (VIP). Neurons in acute slices were electrophysiologically characterized using whole-cell recordings and filled with biocytin. This allowed us to determine their firing pattern as regular-spiking, intrinsically bursting and fast-spiking, respectively. Biocytin was revealed histochemically and VIP immunohistochemically. Sections were examined for contacts between the axons of the filled neurons and the VIP-ir targets. Twenty pyramidal cells and five nonpyramidal (inter)neurons were recovered and sufficiently stained for further analysis. Regular-spiking pyramidal cells displayed no axonal boutons in contact with VIP-ir targets. In contrast, intrinsically bursting layer V pyramidal cells showed four putative single contacts with a proximal dendrite of VIP neurons. Fast-spiking interneurons formed contacts with two to six VIP neurons, preferentially at their somata. Single as well as multiple contacts on individual target cells were found. Electron microscopic examinations showed that light-microscopically determined contacts represent sites of synaptic interactions. Our results suggest that, within infragranular local cortical circuits, (i) fast-spiking interneurons are more likely to influence VIP cells than are pyramidal cells and (ii) pyramidal cell input probably needs to be highly convergent to fire VIP target cells. [source]


Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease

JOURNAL OF NEUROCHEMISTRY, Issue 3 2006
Luis V. Colom
Abstract Information processing and storing by brain networks requires a highly coordinated operation of multiple neuronal groups. The function of septal neurons is to modulate the activity of archicortical (e.g. hippocampal) and neocortical circuits. This modulation is necessary for the development and normal occurrence of rhythmical cortical activities that control the processing of sensory information and memory functions. Damage or degeneration of septal neurons results in abnormal information processing in cortical circuits and consequent brain dysfunction. Septal neurons not only provide the optimal levels of excitatory background to cortical structures, but they may also inhibit the occurrence of abnormal excitability states. [source]


Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 11 2010
Gert Van den Bergh
Abstract We report the results of extracellular single-unit recording experiments where we quantitatively analyzed the receptive-field (RF) properties of neurons in V1 and an adjacent extrastriate visual area (V2L) of anesthetized mice with emphasis on the RF center-surround organization. We compared the results with the RF center-surround organization of V1 and V2 neurons in macaque monkeys. If species differences in spatial scale are taken into consideration, mouse V1 and V2L neurons had remarkably fine stimulus selectivity, and the majority of response properties in V2L were not different from those in V1. The RF center-surround organization of mouse V1 neurons was qualitatively similar to that for macaque monkeys (i.e., the RF center is surrounded by extended suppressive regions). However, unlike in monkey V2, a significant proportion of cortical neurons, largely complex cells in V2L, did not exhibit quantifiable RF surround suppression. Simple cells had smaller RF centers than complex cells, and the prevalence and strength of surround suppression were greater in simple cells than in complex cells. These findings, particularly on the RF center-surround organization of visual cortical neurons, give new insights into the principles governing cortical circuits in the mouse visual cortex and should provide further impetus for the use of mice in studies on the genetic and molecular basis of RF development and synaptic plasticity. J. Comp. Neurol. 518:2051,2070, 2010. © 2010 Wiley-Liss, Inc. [source]


Co-regulation of ocular dominance plasticity and NMDA receptor subunit expression in glutamic acid decarboxylase-65 knock-out mice

THE JOURNAL OF PHYSIOLOGY, Issue 12 2009
Patrick O. Kanold
Experience can shape cortical circuits, especially during critical periods for plasticity. In visual cortex, imbalance of activity from the two eyes during the critical period shifts ocular dominance (OD) towards the more active eye. Inhibitory circuits are crucial in this process: OD plasticity is absent in GAD65KO mice that show diminished inhibition. This defect can be rescued by application of benzodiazepines, which increase GABAergic signalling. However, it is unknown how such changes in inhibition might disrupt and then restore OD plasticity. Since NMDA dependent synaptic plasticity mechanisms are also known to contribute to OD plasticity, we investigated whether NMDA receptor levels and function are also altered in GAD65KO. There are reduced NR2A levels and slower NMDA currents in visual cortex of GAD65KO mice. Application of benzodiazepines, which rescues OD plasticity, also increases NR2A levels. Thus it appears as if OD plasticity can be restored by adding a critical amount of excitatory transmission through NR2A-containing NMDA receptors. Together, these observations can unify competing ideas of how OD plasticity is regulated: changes in either inhibition or excitation would engage homeostatic mechanisms that converge to regulate NMDA receptors, thereby enabling plasticity mechanisms and also ensuring circuit stability. [source]


Postnatal development of synaptic transmission in local networks of L5A pyramidal neurons in rat somatosensory cortex

THE JOURNAL OF PHYSIOLOGY, Issue 1 2007
Andreas Frick
The probability of synaptic transmitter release determines the spread of excitation and the possible range of computations at unitary connections. To investigate whether synaptic properties between neocortical pyramidal neurons change during the assembly period of cortical circuits, whole-cell voltage recordings were made simultaneously from two layer 5A (L5A) pyramidal neurons within the cortical columns of rat barrel cortex. We found that synaptic transmission between L5A pyramidal neurons is very reliable between 2 and 3 weeks of postnatal development with a mean unitary EPSP amplitude of ,1.2 mV, but becomes less efficient and fails more frequently in the more mature cortex of ,4 weeks of age with a mean unitary EPSP amplitude of 0.65 mV. Coefficient of variation and failure rate increase as the unitary EPSP amplitude decreases during development. The paired-pulse ratio (PPR) of synaptic efficacy at 10 Hz changes from 0.7 to 1.04. Despite the overall increase in PPR, short-term plasticity displays a large variability at 4 weeks, ranging from strong depression to strong facilitation (PPR, range 0.6,2.1), suggesting the potential for use-dependent modifications at this intracortical synapse. In conclusion, the transmitter release probability at the L5A,L5A connection is developmentally regulated in such a way that in juvenile animals excitation by single action potentials is efficiently transmitted, whereas in the more mature cortex synapses might be endowed with a diversity of filtering characteristics. [source]