Home About us Contact | |||
Corn Trypsin Inhibitor (corn + trypsin_inhibitor)
Selected AbstractsInfluence of the surface on thrombin generationINTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, Issue 4 2008T. W. STIEF Summary Thrombin generation depends on the surface of the blood vessel or container. With a new ultra-sensitive and -specific thrombin assay the surface-dependent thrombin generation was quantified. Citrated blood or plasma was preincubated for 1 h (37 °C). Citrated blood, plasma, or plasma with 0,10 g/l hemoglobin,erythrocyte microparticles (Hb,MP) were preincubated at 23 °C or at 37 °C. Plasma samples (50 ,l) were recalcified in polystyrol (PS) wells and incubated for different coagulation reaction times (CRT). Final supramolar arginine concentrations, 0.1% Triton X 100, and chromogenic thrombin substrate concentrations in the onefold km,range were added and the linear ,A/t was measured in the recalcified coagulation activity assay (RECA). Aprotinin or corn trypsin inhibitor were added. (i) Recalcification of plasma (in different monovettes) pre-incubated for 1 h (37 °C) generated the following thrombin activities after 7 min (37 °C): 0.74 IU/ml (polypropylene (PP)-citrate), 0.39 IU/ml (PP-EDTA), 0.06 IU/ml (PP-heparin), 1.38 IU/ml (PS), 0.63 IU/ml (1 ml volume PP), 0.13 IU/ml (15 ml volume PP), and 3.62 IU/ml (glass). (ii) Recalcification of preincubated whole blood generated up to about fivefold more thrombin. (iii) Thrombin generation is proportional to the plasmatic concentration of Hb,MP, 10 g/l Hb,MP generating about 4 IU/ml thrombin within 20 min CRT. (iv) The IC50 of aprotinin and corn typsin inhibitor on thrombin generation in RECA are about 2 KIU/ml and about 1 U/ml, respectively. The reaction wall, the preincubation temperature, and hemolysis influences thrombin generation. The RECA allows to diagnose the prothrombotic capacity of any material. [source] Involvement of the contact phase and intrinsic pathway in herpes simplex virus-initiated plasma coagulationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2010E. S. GERSHOM Summary.,Background:,A hemostatic response to vascular injury is initiated by the extrinsic pathway of coagulation and amplified by the intrinsic pathway. We previously reported that purified herpes simplex virus type-1 (HSV1) has constitutive extrinsic pathway tissue factor (TF) and anionic phospholipid on its surface derived from the host cell, and can consequently bypass strict cellular control of coagulation. Objective:,The current work addresses the hypothesis that HSV1-induced plasma coagulation also involves intrinsic pathway, factor VIII (FVIII), and upstream contact activation pathway, factor XII (FXII). Results:,HSV1-initiated clotting was accelerated when purified FVIII was added to FVIII-deficient plasma and in normal plasma attenuated by an inhibitory anti-FVIII antibody (Ab). High HSV1 concentrations predictably reduced the effect of FVIII due to the availability of excess viral TF. To further define TF-independent clotting mechanisms initiated by HSV1, the extrinsic pathway was disabled using factor VII-deficient plasma. The intrinsic pathway is triggered by activation of FXII associated with surface-bound kallikrein, which subsequently activates factor XI. Here we found that an inhibitor of activated FXII, corn trypsin inhibitor, and anti-FXII, anti-kallikrein and anti-FXI Abs inhibited HSV1-initiated clotting. HSV1-enhanced activation of purified FXII was confirmed by Western blot, but required prekallikrein. Conclusion:,The current work shows that HSV1 can trigger and amplify coagulation through the contact phase and intrinsic pathway, and suggests an additional mechanism that may contribute to vascular pathology. [source] Clinical measurement of thrombin generation by calibrated automated thrombography requires contact factor inhibitionJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 11 2004R. Luddington Summary.,Background: Measurement of thrombin generation by calibrated automated thrombography (CAT) could fulfill the requirements of a global test of coagulability and is potentially applicable to routine clinical laboratory practice. The purpose of this study was to determine if corn trypsin inhibitor (CTI) could be used to abolish contact factor activation in this assay, thus allowing accurate measurement of low tissue factor (TF) concentration-triggered thrombin generation on samples taken in a routine clinical setting. Methods: The endogenous thrombin potential (ETP) was measured by CAT. Results: The study demonstrated that addition of CTI after plasma separation is not sufficient and blood must be drawn into tubes containing CTI if in-vitro contact factor-activated thrombin generation is to be abolished. Contact factor-activated thrombin generation is completely inhibited at a CTI concentration of 18.3 µg mL,1 whole blood. Increasing the CTI concentration above this level does not lead to suppression of the TF-triggered ETP. At a TF concentration of 2 pmol, ETPs were significantly lower in the presence of CTI (P < 0.001). The difference (no CTI minus CTI) between results ranged from ,,1 to 2159 nM min,1 (median ,,754). Whilst the low concentration TF-ETP assay was not optimized to distinguish degrees of coagulability between patient samples, there was a significant difference in ETP between normal and hemophilia samples and samples from patients with a clinical prothrombotic tendency. Conclusions: CTI can be applied to ETP measurement by CAT. This permits the use of CAT in a low TF-triggered thrombin generation assay without concern for the effect of interference from in-vitro contact factor activation and the optimum reagent conditions for using CAT as a global test of coagulability in clinical practice can now be defined. [source] Factor VIIa-mediated tenase function on activated platelets under flowJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2004M. S. Goel Summary.,Background: Tissue factor (TF) and/or active factor (F)VIIa may be stored inside resting platelets. Objectives: The objective of this study was to examine if platelets, following activation of GPVI, could support tenase and prothrombinase activity without any exogenously added tissue factor. Methods: Thrombin (IIa) formation on gel-filtered platelets with added factors or the clotting of platelet-free plasma (PFP) or platelet-rich plasma (PRP) supplemented with corn trypsin inhibitor (CTI) (to inhibit factor XIIa) was studied in well plate assays with a fluorogenic thrombin substrate or in flow assays by fibrin visualization. Results: Pretreatment of convulxin (CVX)-stimulated, fibrinogen-adherent, gel-filtered platelets with anti-TF, anti-FVII/VIIa, or 1 nm PPACK [inhibitor of FVIIa, factor XIa and factor (F)IIa] delayed fibrin deposition on platelets perfused with PFP/CTI at 62.5 s,1. Anti-TF or anti-FVII/VIIa also attenuated thrombin generation in plate assays using recalcified PRP/CTI treated with CVX. Anti-TF or anti-FVII/VIIa (but not inhibited factor IXa) delayed the burst in thrombin production by gel-filtered platelets suspended in prothrombin and CVX by 14 min and 40 min, respectively. Anti-FVII/VIIa completely eliminated thrombin generation on fibrinogen-adherent, gel-filtered platelets pretreated with 10 µm PPACK and 10 µm EGR-CK [inhibitor of factor (F)Xa], rinsed, and then supplemented with CVX, prothrombin, and FX. Addition of anionic phospholipid to PFP/CTI or to a mixture of prothrombin, FX, and recVIIa was not sufficient to generate detectable tenase activity. Lastly, isolated, unactivated neutrophils suspended in FX, FII and recVIIa supported a very low level of thrombin generation sensitive to antagonism of P-selectin, CD18, and TF. Conclusions: Activated platelets supported tenase and prothrombinase activity by elevating the function or level of FVIIa and exposing active FVIIa or FVIIa-cofactor(s), distinct from anionic lipid, that may be, in part, TF. [source] Activation of platelets in whole blood by recombinant factor VIIa by a thrombin-dependent mechanismBRITISH JOURNAL OF HAEMATOLOGY, Issue 4 2003Barry Wilbourn Summary. Using a diluted whole blood method of flow cytometric analysis, we have shown that platelets could be activated in vitro in the presence of high concentrations (100 nmol/l) of recombinant factor (F) VIIa (rFVIIa; NovoSeven®) and 2·5 mmol/l calcium chloride. This was demonstrated by a significant increase in the mean percentage of platelets expressing CD62P and their mean fluorescent intensity (MFI) after 30 min versus platelets incubated with calcium or rFVIIa alone or diluted blood alone. The presence of rFVIIa and calcium increased the exposure of the PAC-1 activation epitope of glycoprotein (Gp) IIb/IIIa. This effect was equally influenced by the presence of calcium alone but not by rFVIIa. The effect of rFVIIa was time and concentration dependent. Thrombin generation was also necessary, as the effect of rFVIIa was completely abrogated by the additional presence of hirudin. Furthermore, soy bean trypsin inhibitor (SBTI) but not corn trypsin inhibitor (CTI) abrogated CD62P exposure, suggesting that thrombin was derived via FX but not FXII activation. Exposure of CD62P demonstrated a significant lag phase, sometimes of the order of >,30 min, as well as large intersubject variation. Significant platelet activation was observed at a concentration as low as 25 nmol/l rFVIIa. Platelet,leucocyte aggregation was also increased in the presence of 25 nmol/l rFVIIa and calcium. No significant difference was observed between levels of CD62P in diluted whole blood and platelet-rich plasma adjusted to an identical platelet count after their exposure to rFVIIa and calcium for 30 min. [source] |