Home About us Contact | |||
Core Regions (core + regions)
Selected AbstractsCrystal structures of Nipah and Hendra virus fusion core proteinsFEBS JOURNAL, Issue 19 2006Zhiyong Lou The Nipah and Hendra viruses are highly pathogenic paramyxoviruses that recently emerged from flying foxes to cause serious disease outbreaks in humans and livestock in Australia, Malaysia, Singapore and Bangladesh. Their unique genetic constitution, high virulence and wide host range set them apart from other paramyxoviruses. These characteristics have led to their classification into the new genus Henpavirus within the family Paramyxoviridae and to their designation as Biosafety Level 4 pathogens. The fusion protein, an enveloped glycoprotein essential for viral entry, belongs to the family of class I fusion proteins and is characterized by the presence of two heptad repeat (HR) regions, HR1 and HR2. These two regions associate to form a fusion-active hairpin conformation that juxtaposes the viral and cellular membranes to facilitate membrane fusion and enable subsequent viral entry. The Hendra and Nipah virus fusion core proteins were crystallized and their structures determined to 2.2 Å resolution. The Nipah and Hendra fusion core structures are six-helix bundles with three HR2 helices packed against the hydrophobic grooves on the surface of a central coiled coil formed by three parallel HR1 helices in an oblique antiparallel manner. Because of the high level of conservation in core regions, it is proposed that the Nipah and Hendra virus fusion cores can provide a model for membrane fusion in all paramyxoviruses. The relatively deep grooves on the surface of the central coiled coil represent a good target site for drug discovery strategies aimed at inhibiting viral entry by blocking hairpin formation. [source] The identity of the O-specific polysaccharide structure of Citrobacter strains from serogroups O2, O20 and O25 and immunochemical characterisation of C. youngae PCM 1507 (O2a,1b) and related strainsFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1-2 2003gorzata Miesza Abstract Serological studies using SDS,PAGE and immunoblotting revealed that from five strains that are ascribed to Citrobacter serogroup O2, four strains, PCM 1494, PCM 1495, PCM 1496 and PCM 1507, are reactive with specific anti- Citrobacter O2 serum. In contrast, strain PCM 1573 did not react with anti- Citrobacter O2 serum and, hence, does not belong to serogroup O2. The LPS of Citrobacter youngae O2a,1b (strain PCM 1507) was degraded under mild acidic conditions and the O-specific polysaccharide (OPS) released was isolated by gel chromatography. Sugar and methylation analyses along with 1H- and 13C-NMR spectroscopy, including two-dimensional 1H,1H COSY, TOCSY, NOESY and 1H,13C HSQC experiments, showed that the repeating unit of the OPS has the following structure: NMR spectroscopic studies demonstrated that Citrobacter werkmanii O20 and C. youngae O25 have the same OPS structure as C. youngae O2. Sugar and methylation analyses of the core oligosaccharide fractions demonstrated structural differences in the lipopolysaccharide core regions of these strains, which may substantiate their classification in different serogroups. [source] Effects of interferon alpha therapy on the catalytic domains of the polymerase gene and basal core promoter, precore and core regions of hepatitis B virusJOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 6 2003ROBERT YUNG MING CHEN Aims: The aim of the present study was to examine the catalytic domains of the polymerase gene, the basal core promoter and the precore and core regions of the hepatitis B virus (HBV) genome for specific mutations. These may account for the response to interferon alpha (IFN-,) treatment, which may have prognostic value. Methods: Multiple serum samples were collected prospectively from 30 patients with chronic active hepatitis B who were treated with IFN-,. Patients were assigned to one of three groups: group A (n = 11) and group B (n = 10) individuals were hepatitis B e antigen (HBeAg)-positive prior to treatment. Group A patients underwent HBeAg seroconversion after treatment while group B patients did not. Group C (n = 9) patients were HBeAg-negative prior to treatment. The HBV DNA was extracted from the sera collected before, during and after treatment and the various genomic regions were amplified, sequenced and examined for mutations. Results: During IFN-, therapy, multiple changes were found in the catalytic domains of the HBV polymerase gene in all groups. The frequency of mutations and associated amino acid changes were highest in virus from group C patients and lowest in group A patients. The interdomain regions of the viral polymerase were the most affected. Multiple mutations were also found in the precore, core and core promoter regions. However, no specific mutations were associated with clinical response or outcome. Conclusions: During IFN-, treatment, multiple mutations occurred in the HBV genome, including the catalytic domains of the polymerase gene. Changes that did occur could not be correlated to the clinical response or treatment outcome. However, no mutations were found that have been linked to lamivudine escape, indicating that lamivudine therapy would be effective in IFN-, non-responder patients. [source] Induction of Oxidative DNA Damage in the Peri-Infarct Region After Permanent Focal Cerebral IschemiaJOURNAL OF NEUROCHEMISTRY, Issue 4 2000Tetsuya Nagayama Abstract: To address the role of oxidative DNA damage in focal cerebral ischemia lacking reperfusion, we investigated DNA base and strand damage in a rat model of permanent middle cerebral artery occlusion (MCAO). Contents of 8-hydroxyl-2,-deoxyguanosine (8-OHdG) and apurinic/apyrimidinic abasic sites (AP sites), hallmarks of oxidative DNA damage, were quantitatively measured in nuclear DNA extracts from brains obtained 4-72 h after MCAO. DNA single- and double-strand breaks were detected on coronal brain sections using in situ DNA polymerase I-mediated biotin-dATP nick-translation (PANT) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL), respectively. Levels of 8-OHdG and AP sites were markedly elevated 16-72 h following MCAO in the frontal cortex, representing the peri-infarct region, but levels did not significantly change within the ischemic core regions of the caudateputamen and parietal cortex. PANT- and TUNEL-positive cells began to be detectable 4-8 h following MCAO in the caudate-putamen and parietal cortex and reached maximal levels at 72 h. PANT- and TUNEL-positive cells were also detected 16-72 h after MCAO in the lateral frontal cortex within the infarct border, where many cells also showed colocalization of DNA single-strand breaks and DNA fragmentation. In contrast, levels of PANT-positive cells alone were transiently increased (16 h after MCAO) in the medial frontal cortex, an area distant from the infarct zone. These data suggest that within peri-infarct brain regions, oxidative injury to nuclear DNA in the form of base and strand damage may be a significant and contributory cause of secondary expansion of brain damage following permanent focal ischemia. [source] 2.9 Å crystal structure of ligand-free tryptophanyl-tRNA synthetase: Domain movements fragment the adenine nucleotide binding sitePROTEIN SCIENCE, Issue 2 2000Valentin A. Ilyin Abstract The crystal structure of ligand-free tryptophanyl-tRNA synthetase (TrpRS) was solved at 2.9 Å using a combination of molecular replacement and maximum-entropy map/phase improvement. The dimeric structure (R = 23.7, Rfree = 26.2) is asymmetric, unlike that of the TrpRS tryptophanyl-5,AMP complex (TAM; Doublie S, Bricogne G, Gilmore CJ, Carter CW Jr, 1995, Structure 3:17,31). In agreement with small-angle solution X-ray scattering experiments, unliganded TrpRS has a conformation in which both monomers open, leaving only the tryptophan-binding regions of their active sites intact. The amino terminal ,A-helix, TIGN, and KMSKS signature sequences, and the distal helical domain rotate as a single rigid body away from the dinucleotide-binding fold domain, opening the AMP binding site, seen in the TAM complex, into two halves. Comparison of side-chain packing in ligand-free TrpRS and the TAM complex, using identification of nonpolar nuclei (Ilyin VA, 1994, Protein Eng 7:1189,1195), shows that significant repacking occurs between three relatively stable core regions, one of which acts as a bearing between the other two. These domain rearrangements provide a new structural paradigm that is consistent in detail with the"induced-fit" mechanism proposed for TyrRS by Fersht et al. (Fersht AR, Knill-Jones JW, Beduelle H, Winter G, 1988, Biochemistry 27:1581,1587). Coupling of ATP binding determinants associated with the two catalytic signature sequences to the helical domain containing the presumptive anticodon-binding site provides a mechanism to coordinate active-site chemistry with relocation of the major tRNA binding determinants. [source] Thalamic label patterns suggest primary and ventral auditory fields are distinct core regionsTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 10 2010Douglas A. Storace Abstract A hierarchical scheme proposed by Kaas and colleagues suggests that primate auditory cortex can be divided into core and belt regions based on anatomic connections with thalamus and distinctions among response properties. According to their model, core auditory cortex receives predominantly unimodal sensory input from the ventral nucleus of the medial geniculate body (MGBv); whereas belt cortex receives predominantly cross-modal sensory input from nuclei outside the MGBv. We previously characterized distinct response properties in rat primary (A1) versus ventral auditory field (VAF) cortex; however, it has been unclear whether VAF should be categorized as a core or belt auditory cortex. The current study employed high-resolution functional imaging to map intrinsic metabolic responses to tones and to guide retrograde tracer injections into A1 and VAF. The size and density of retrogradely labeled somas in the medial geniculate body (MGB) were examined as a function of their position along the caudal-to-rostral axis, subdivision of origin, and cortical projection target. A1 and VAF projecting neurons were found in the same subdivisions of the MGB but in rostral and caudal parts, respectively. Less than 3% of the cells projected to both regions. VAF projecting neurons were smaller than A1 projecting neurons located in dorsal (MGBd) and suprageniculate (SG) nuclei. Thus, soma size varied with both caudal-rostral position and cortical target. Finally, the majority (>70%) of A1 and VAF projecting neurons were located in MGBv. These MGB connection profiles suggest that rat auditory cortex, like primate auditory cortex, is made up of multiple distinct core regions. J. Comp. Neurol. 518:1630,1646, 2010. © 2010 Wiley-Liss, Inc. [source] Linear polarization in small radio sourcesASTRONOMISCHE NACHRICHTEN, Issue 5-6 2006A. Rossetti Abstract Polarimetric observations at 5 and 8.4 GHz have been performed for 3 CSS quasars. These observations are part of a programme aimed at studying the polarization characteristics of the core regions, jets, and lobes in such objects and at possibly finding of jet-cloud interactions in CSSs. The behaviour of the fractional polarization and of the observed polarization angle as a function of ,2 provides information on the density distribution of the ISM embedding the radio source, on its clumpiness and on the ordered and random components of the interstellar magnetic field. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Functional studies of an HIV-1 encoded glutathione peroxidaseBIOFACTORS, Issue 1-4 2006Lijun Zhao Abstract In an alternate reading frame overlapping the viral envelope gene, HIV-1 has been shown to encoded a truncated glutathione peroxidase (GPx) module. Essential active site residues of the catalytic core regions of mammalian GPx sequences are conserved in the putative viral GPx (vGPx, encoded by the env-fs gene). Cells transfected with an HIV-1 env-fs construct show up to a 100% increase in GPx enzyme activity, and are protected against the loss of mitochondrial transmembrane potential and subsequent cell death induced by exogenous oxidants or mitochondrial reactive oxygen species. An intact vGPx gene was observed to be more common in HIV-1-infected long-term non-progressors, as compared to HIV-1 isolates from patients developing AIDS. An antioxidant/antiapoptotic protective role of the vGPx is also consistent with the observation that ,1 frameshifting induced by the HIV-1 env-fs sequence AAAAAGA (which contains a potential "hungry" arginine codon, AGA) increases during arginine deficiency, which has been associated with increased oxidative stress. Under arginine-limited conditions, nitric oxide synthase generates superoxide, which rapidly combines with NO to form peroxynitrite, which can cause activated T-cells to undergo apoptosis. Thus, biosynthesis of the HIV-1 GPx as an adaptive response to low arginine conditions might delay oxidant-induced apoptotic cell death, providing an enhanced opportunity for viral replication. [source] Astrocytes are More Resistant to Focal Cerebral Ischemia Than Neurons and Die by a Delayed NecrosisBRAIN PATHOLOGY, Issue 4 2009Günfer Gürer Abstract Several recent reports proposed that astrocyte death might precede neuronal demise after focal ischemia, contrary to the conventional view that astrocytes are more resistant to injury than neurons. Interestingly, there are findings supporting each of these opposing views. To clarify these controversies, we assessed astrocyte viability after 2-h middle cerebral artery occlusion in mice. In contrast to neighboring neurons, astrocytes were alive and contained glycogen across the ischemic area 6 h after reperfusion, and at the expanding outer border of the infarct at later time points. These glycogen-positive astrocytes had intact plasma membranes. Astrocytes lost plasmalemma integrity much later than neurons: 19 ± 22 (mean ± standard deviation), 58 ± 14 and 69 ± 3% of astrocytes in the perifocal region became permeable to propidium iodide (PI) at 6, 24, 72 h after ischemia, respectively, in contrast to 81 ± 2, 96 ± 3, 97 ± 2% of neurons. Although more astrocytes in the cortical and subcortical core regions were PI-positive, their numbers were considerably less than those of neurons. Lysosomal rupture (monitored by deoxyribonuclease II immunoreactivity) followed a similar time course. Cytochrome-c immunohistochemistry showed that astrocytes maintained mitochondrial integrity longer than neurons. EM confirmed that astrocyte ultrastructure including mitochondria and lysosomes disintegrated much later than that of neurons. We also found that astrocytes died by a delayed necrosis without significantly activating apoptotic mechanisms although they rapidly swelled at the onset of ischemia. [source] Genetic characteristics of hepatitis B virus genotypes as a factor for interferon-induced HBeAg clearanceJOURNAL OF MEDICAL VIROLOGY, Issue 8 2007Jinlin Hou Abstract The factors determining the responsiveness of different hepatitis B virus (HBV) genotypes to interferon treatment are not fully understood. We investigated the relationship between HBV genetic characteristics and the outcome of short (16 weeks) or prolonged (32 weeks) treatment with standard interferon-alpha in a prospectively followed cohort of 103 patients across Europe with HBeAg positive chronic hepatitis B. INNO-LiPA assays and HBV DNA sequencing were used to determine HBV genotypes, mutations in the core promoter and precore/core regions. After 16-weeks interferon-alpha treatment, the rate of HBeAg clearance was higher in genotype A versus all other genotypes (P,=,0.014), or genotype D alone (P,=,0.05). The HBV genome analysis revealed that: (i) after 16-weeks treatment, an HBV subpopulation with core promoter mutations emerged or increased (P,<,0.001) only in genotype A; (ii) the core gene of genotype A has the lowest number of amino acid variations in comparison with genotypes B, C, or D. Logistic regression analysis identified genotype A as a positive predictor of short (16 weeks) treatment response (P,=,0.001; odds ratio 6.19, 95 confidence interval 1.94,19.8), having a greater impact than baseline HBV DNA or alanine aminotransferase (ALT) levels. In contrast, the response to prolonged interferon-alpha treatment was not different between HBV genotypes. These results suggest that HBV genotype A responds earlier to interferon treatment than other genotypes, which is associated with its molecular characteristics. The optimal duration of interferon-based therapies in chronic hepatitis B may vary between different HBV genotypes. J. Med. Virol. 79: 1055,1063, 2007. © 2007 Wiley-Liss, Inc. [source] |