Home About us Contact | |||
Core Material (core + material)
Selected AbstractsTests for the Use of La2Mo2O9 -based Oxides as Multipurpose SOFC Core MaterialsFUEL CELLS, Issue 3 2010J. Jacquens Abstract The mixed ionic,electronic conductivity under dilute hydrogen, the stability and the catalytic activity under propane:air type mixtures of a series of LAMOX oxide-ion conductors have been studied. The effect of exposure to dilute hydrogen on the conductivity of the ,-La2(Mo2,,,yWy)O9 series at 600,°C depends on tungsten content: almost negligible for the highest (y,=,1.4), it is important for La2Mo2O9 (y,=,0). In propane:air, all tested LAMOX electrolytes are stable at 600,700,°C, but get reduced when water vapour is present. La2Mo2O9 is the best oxidation catalyst of the series, with an activity comparable to that of nickel. The catalytic activity of other tested LAMOX compounds is much lower, (La1.9Y0.1)Mo2O9 showing a deactivation phenomenon. These results suggest that depending on composition, La2(Mo2,,,yWy)O9 compounds could be either electrolytes in single-chamber SOFC and dual-chamber micro-SOFC (y,=,1.4) or anode materials in dual-chamber SOFC (low y) or oxidation catalysts in SOFCs operating with propane (y,=,0). [source] A Systematic Review of Dowel (Post) and Core Materials and SystemsJOURNAL OF PROSTHODONTICS, Issue 6 2009Joanna N. Theodosopoulou DDS Abstract Purpose: The aim of this systematic review was to determine which dowel (post) and core system is the most successful when used in vivo to restore endodontically treated teeth. Materials and Methods: A MEDLINE, a Cochrane, and an EMBASE search (three specified searches) were conducted to identify randomized (RCT) and nonrandomized controlled clinical trials (CCT), cohort (CS), and case control studies (CCS) until January 2008, conducted on humans, and published in English, German, and French, relating to dowel and core systems for restoring endodontically treated teeth. Also, a hand search was conducted, along with contact with the authors when needed. Results: The MEDLINE, Cochrane, and EMBASE searches identified 997, 141, and 25 published articles, respectively. Ten articles from the MEDLINE and seven articles from the Cochrane search (that were also identified in the MEDLINE search) met the inclusion and validity assessment criteria. Six out of the ten studies were RCTs, two were CCTs, and two CSs. The RCT studies suggest that carbon fiber in resin matrix dowels are significantly better than precious alloy cast dowels (number needed to treat, NNT = 8.30). Tapered gold alloy cast dowels are better than ParaPost® gold alloy cast dowels (NNT = 13.15). ParaPost® prefabricated dowels are slightly better than ParaPost® cast dowels (NNT = 175.4). Glass fiber dowels are significantly better than metal screw dowels (NNT = 5.46), but worse than titanium (NNT =,21.73) (moderately). Carbon fiber dowels are worse than gold alloy cast dowels (significantly) (NNT =,5.81) and than amalgam dowels (NNT =,125) (slightly). The CCT studies suggest that metal dowels are better (NNT = 21.73) but also worse than cast dowels (NNT =,33.33) depending on the remaining amount of coronal hard tissue. Quartz fiber dowels show success rates similar to and worse than glass fiber-reinforced dowels (NNT =,37.03). The results from the CS studies suggest that carbon fiber in resin matrix dowels are better (moderately) than carbon fiber + quartz and quartz fiber dowels. Titanium dowels with a composite build-up are better (moderately) than gold alloy cast dowels. Conclusions: According to the studies of the highest levels of evidence, carbon fiber in resin matrix dowels are significantly better than precious alloy cast dowels (RCT). Glass fiber dowels are significantly better than metal screw dowels (RCT) and moderately better than quartz fiber dowels (CCT). Carbon fiber dowels are significantly worse than metal dowels (of precious alloy) (RCT). Prefabricated metal dowels are slightly better than cast dowels (RCT), but moderately worse when no collar of the dentin above the gingiva could be achieved (CCT). [source] New data for sandwich panels on the correlation between the SBI test method and the room corner reference scenarioFIRE AND MATERIALS, Issue 1 2005Jesper Axelsson Abstract Assessment of the fire behaviour of sandwich panels is continuously under discussion. The fire behaviour of these panels is a combination of material characteristics such as the core material and mechanical behaviour of the panels such as joints, dilations etc. The use of small or intermediate scale tests can be questioned for such types of products. Within the proposed European product standard for sandwich panels (prEN 14509) the intermediate scale test method SBI (EN 13823) has been suggested as the fire test method to certify panels. The standard does, however, use quite an artificial mounting procedure, which does not fully reflect the end-use conditions of the panels. In a previous research project conducted by Nordtest it was shown that the correlation between the SBI test method and both the ISO 9705 and ISO 13784 part 1 was insufficient. The test data produced for the SBI test method, however, did not use the above mentioned mounting technique. In this article new data for a number of products are added to the database using the mounting procedure of the product standard. The data are compared with the previous data and show that the mounting method of the product standard results in slightly more severe conditions but that there are still discrepancies with the full-scale test results. The data also show an unacceptable level of repeatability due to the fact that small dilations result in a wide variation of classification result. The new data together with the old data show once more that it is dangerous to make a fire safety assessment of a sandwich panel based on small or intermediate scale tests. Copyright © 2004 John Wiley & Sons, Ltd. [source] Encapsulation and release of a fluorescent probe, khusimyl dansylate, obtained from vetiver oil by complex coacervationFLAVOUR AND FRAGRANCE JOURNAL, Issue 1 2008A. S. Prata Abstract The essential oil of vetiver [Vetiveria zizanoides (L.) Nash ex. Small] is widely used in the perfume industry, owing to its pleasant, long-lasting, woody aroma. If this substance can be encapsulated in microparticles so that its release can be controlled, the effective duration of its properties should be extended for a much longer period of time. The present study was thus designed to investigate the encapsulation of this vetiver essential oil in microparticles. Since the detection of the effective release of such a complex mixture from these microparticles into the receiving medium can be problematic, an identifiable probe can be released with it to facilitate evaluation of the progression of the release process. Zizanoic acid is one of the compounds found in vetiver oil which depreciates its sensorial quality. This acid was thus extracted and reduced to the corresponding alcohol, khusimol, which was combined with dansyl chloride to form a fluorescent ester, khusimyl dansylate (KD). The vetiver oil and the fluorescent probe were then encapsulated (100:1) in microparticles produced by the complex coacervation of gum Arabic and gelatin. The microparticles showed spherical shape, multinuclear distribution of the core material and high encapsulation efficiency (95%). Two versions of these microparticles, moist and freeze-dried ones, were tested for the release of the KD into an ethanol medium. The moist particles released the whole KD after 5 h, although only 80% of the fluorescent probe was released with the freeze-dried microparticles at that time, probably due to the constriction caused by freeze-drying. The release of the components of vetiver oil, under the same experimental conditions, was followed, in parallel, by gas chromatography and the results obtained were compared and discussed. Copyright © 2007 John Wiley & Sons, Ltd. [source] A Novel Cathode Material with a Concentration-Gradient for High-Energy and Safe Lithium-Ion BatteriesADVANCED FUNCTIONAL MATERIALS, Issue 3 2010Yang-Kook Sun Abstract A high-energy functional cathode material with an average composition of Li[Ni0.72Co0.18Mn0.10]O2, mainly comprising a core material Li[Ni0.8Co0.2]O2 encapsulated completely within a stable manganese-rich concentration-gradient shell is successfully synthesized by a co-precipitation process. The Li[Ni0.72Co0.18Mn0.10]O2 with a concentration-gradient shell has a shell thickness of about 1,µm and an outer shell composition rich in manganese, Li[Ni0.55Co0.15Mn0.30]O2. The core material can deliver a very high capacity of over 200,mA h g,1, while the manganese-rich concentration-gradient shell improves the cycling and thermal stability of the material. These improvements are caused by a gradual and continuous increase of the stable tetravalent Mn in the concentration-gradient shell layer. The electrochemical and thermal properties of this cathode material are found to be far superior to those of the core Li[Ni0.8Co0.2]O2 material alone. Electron microscopy also reveals that the original crystal structure of this material remains intact after cycling. [source] Tectono-sedimentary evolution of the northernmost margin of the NE German Basin between uppermost Carboniferous and Late Permian (Rotliegend)GEOLOGICAL JOURNAL, Issue 1 2001H. Rieke Abstract The tectono-sedimentary evolution of the Rotliegend deposits of the northernmost margin of NE German Basin (NEGB) has been analysed on the basis of detailed sedimentary logs of 300,m of core material together with the re-evaluation of 600,km of seismic lines. Three distinct phases were recognized. During the initial Phase I, basin geometry was largely controlled by normal faulting related to deep-seated ductile shearing leading to a strong asymmetric shape, with a steep fault-controlled eastern margin and a gently, dipping western margin. The results of forward modelling along a cross-section fit the basin geometry in width and depth and reveal a footwall uplift of c. 1000,m. Adjacent to the steep faults, local sedimentation of Lithofacies Type I was confined to non-cohesive debris flow-dominated alluvial fans, whereas the gently dipping western margin was dominated by alluvial-cone sedimentation. During the post-extensional period (Phase II), cooling of the lithosphere generated additional accommodation space. The sediments of Lithofacies Type II, comprising mainly clast-supported conglomerates, are interpreted as braided ephemeral stream flow-surge deposits. Tectonic quiescence and an increase in flood events resulting from wetter climate led to progradation of this facies over the entire region. At the end of this period, the accommodation space was almost completely filled resulting in a level topography. Phase III was controlled by the thermal-induced subsidence of the southerly located NEGB in post-Illawarra times. The formerly isolated region tilted towards the SW, thus forming the northern margin of the NEGB during uppermost Havel and Elbe Subgroup times. The sediments of Lithofacies Type III were divided into a marginal sandstone-dominated environment and a finer-grained facies towards the SW. The former consists of poorly-sorted coarse-grained sandstones of a proximal and medial ephemeral stream floodplain facies. The latter comprise mud flat fines and fine-grained distal ephemeral stream deposits. The end of the tectono-sedimentary evolution is marked by the basinwide Zechstein transgression. Copyright © 2001 John Wiley & Sons, Ltd. [source] Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transferHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 1 2007Yu Rao Abstract Microencapsulated phase change material (MEPCM) is formed by packing PCM into a microcapsule with a solid but flexible shell. MEPCM can be used to enhance liquid cooling performance considerably. In this paper, experiments on the preparation of MEPCM with a double-layered shell have been conducted. An in-situ polymerization microencapsulation process was used to prepare the MEPCM with melamine resin as the shell material and n-Docosane (C22H46) as the core material. Interesting parameters like the size of the prepared MEPCM, the core mass fraction in the MEPCM, and the thermal storage capability of the prepared MEPCM have been measured and analyzed. © 2006 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(1): 28,37, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.20138 [source] A systematic method for the development of a three-phase transformer non-linear modelINTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, Issue 8 2010Andreas D. Theocharis Abstract In this work, a novel three-phase transformer non-linear model is developed. The proposed model takes into account the magnetic core topology and the windings connections. The non-linear characteristic curve of the core material is introduced by its magnetization curve or by its hysteresis loop using the mathematical hysteresis model proposed by Tellinen or the macroscopic hysteresis model proposed by Jiles,Atherton. The eddy currents effects are included through non-linear resistors using Bertotti's work. The proposed model presents several advantages. An incremental linear circuit, having the same topology with the magnetic circuit of the core, is used in order to directly write the differential equations of the magnetic part of the transformer. The matrix Ld that describes the coupling between the windings of the transformer is systematically derived. The electrical equations of the transformer can be easily written for any possible connection of the primary and secondary windings using the unconnected windings equations and transformation matrices. The proposed methods for the calculation of the coupling between the windings, the representation of the eddy currents and the inclusion of the core material characteristic curve can be used to develop a transformer model appropriate for the EMTP/ATP-type programs. Copyright © 2009 John Wiley & Sons, Ltd. [source] Microencapsulation of hydrophilic solid powder as fire retardant agent with epoxy resin by droplet coalescence methodJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008Masanori Takahashi Abstract To give water resistance to Bistetrazol,diammonium (BHT,2NH3) as a fire retardant agent, microencapsulation with epoxy resin was tried by the droplet coalescence method. In this method, two kinds of epoxy resin droplets were prepared; one is the larger epoxy resin droplet containing BHT,2NH3 as a core material and the other the smaller droplets containing Imidazole as a gelation agent. The larger epoxy resin droplets were made to coalesce with the many smaller droplets during the microencapsulation process to prepare microcapsules. In the experiment, the agitation velocities for preparation of the droplets and for coalescence were mainly changed. With increase in the impeller speed, the content of core material increased, became maximum because of increase in the coalescence frequency, and then decreased because of breakup of droplets. With increase in the impeller speed, the leakage ratio of core material decreased, became minimum, and then increased. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008. [source] Preparation and optimization of 2,4-D loaded cellulose derivatives microspheres by solvent evaporation techniqueJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2007Z. El Bahri Abstract Controlled release herbicide formulations were prepared by microencapsulation using solvent evaporation technique. 2,4-D was chosen as core material, which was microencapsulated in two cellulose derivatives as matrices: cellulose acetate butyrate butyryl (CAB) and ethylcellulose (EC). The work is intended to produce systems containing the herbicide to reduce its risks by dermal contact, evaporation, or degradation and to control the release of the active agent. The microspheres loaded by 2,4-D were characterized by scanning electron microscopy and infrared spectroscopy. We have obtained microparticles in the range of D32 of 42,277 ,m with CAB and 88,744 ,m with EC by varying the process parameters. The drug entrapment was improved by controlling certain factors such as polymer/solvent ratio, pH of continuous phase, and organic phase solvent. The drug release was established in deionized water at pH = 5.5 and 25°C and the 2,4-D concentrations were estimated by UV analysis. The release data were analyzed according to Fick's law and the results demonstrate that the release rate can be controlled by modifying the process parameters. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2742,2751, 2007 [source] Control of the morphology and the size of complex coacervate microcapsules during scale-upAICHE JOURNAL, Issue 6 2009C. Y. G. Lemetter Abstract Scale-up of complex coacervation, a fat encapsulation technology, is not trivial since the microcapsules morphology and size are highly affected by the processing conditions. So far it has been achieved empirically (trial and error approach). The goal of this study was to produce at various scale capsules with a single-oil droplet as the core material and small enough to be below sensory threshold. The turbulence level was identified as the main scale-up criterium and a master-curve could be drafted showing the capsule mean diameter as function of the Reynolds number, independent of the level of production scale. From a parent emulsion with specific oil droplets size (12,15 ,m), the Reynolds number had to be maintained above a critical value (15,000) to avoid capsules agglomeration with multiple oil cores and large particle sizes. To avoid aggregation, this turbulence level had to be kept until the temperature dropped below a critical value (14°C for a cooling rate of 35°C/2 h). Applying these learning led to a successful scale-up from bench (2 L) to a pilot plant scale of 50 L. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Effect of prefabricated metal post-head design on the retention of various core materialsJOURNAL OF ORAL REHABILITATION, Issue 6 2000M. Zalkind Retention of various post heads to core restorative materials is an important factor in the selection of prefabricated post systems and restorative materials for the restoration of endodontically treated teeth. This study examines the retention of a post,core prefabricated system in relation to core material and post-head design. A total of 60 samples were prepared using two different post systems (ParaPost Plus® (PP) and ParaPost Unity® (PU), with amalgam, composite or glass,ionomer as one of the core materials. The samples were tested using the Instron testing machine. The PP was superior to the PU prefabricated post with respect to the retention of various core materials. Retention values in descending order of magnitude were found to be: composite, amalgam and glass,ionomer (significantly lower). The rhomboid serrated design of PP was superior in retention to the rounded smooth UP system. Composite material proved to be superior in retention, closely followed by amalgam, with glass,ionomer significantly less retentive. [source] Core,shell structure and segregation effects in composite droplet polymer blendsAICHE JOURNAL, Issue 4 2003Joël Reignier Core,shell morphology formation within the dispersed phase was studied for composite droplet polymer-blend systems comprising a high-density polyethylene matrix, polystyrene shell and different molecular weights of poly(methyl methacrylate) core material. The blends were prepared in the melt using an internal mixer, and the morphology was analyzed by electron microscopy. Changing the viscoelastic properties of the core in the dispersed phase dramatically affects PS-PMMA segregation within the dispersed composite droplet itself. A high-molecular-weight-PMMA core contains a large quantity of occluded PS inclusions, while the low-molecular-weight PMMA results in a perfectly segregated PS shell and PMMA core. These phenomena were attributed to the viscosity of the PMMA. Using the latter system, a direct microscopic study of the shell formation process demonstrates unambiguously that under conditions of perfect segregation, the onset of complete shell formation corresponds to a shell thickness that is close to two times the radius of gyration of polystyrene. Thus, the thinnest possible shell in such a system possesses a molecular-scale thickness. The system with the high-molecular-weight-PMMA core demonstrates an onset of complete shell formation that is displaced to higher concentrations due to the poor segregation effect. By counterbalancing the effects of viscosity ratio and interfacial effects on the composite droplet size, it is possible to generate perfectly segregated core,shell dispersed-phase morphologies of almost identical size with a controlled shell thickness ranging from 40 to 300 nm. [source] Formation of mesosiderites by fragmentation and reaccretion of a large differentiated asteroidMETEORITICS & PLANETARY SCIENCE, Issue 7 2001Edward R. D. SCOTT To test whether impacts can excavate core iron and mix it with crustal material, we used a low-resolution, smoothed-particle hydrodynamics computer simulation. For 50,300 km diameter differentiated targets, we found that significant proportions of scrambled core material (and hence potential mesosiderite metal material) could be generated. For near-catastrophic impacts that reduce the target to 80% of its original diameter and about half of its original mass, the proportion of scrambled core material would be about 5 vol%, equivalent to ,10 vol% of mesosiderite-like material. The paucity of olivine in mesosiderites and the lack of metal-poor or troilite-rich meteorites from the mesosiderite body probably reflect biased sampling. Mesosiderites may be olivine-poor because mantle material was preferentially excluded from the metal-rich regions of the reaccreted body. Molten metal globules probably crystallized around small, cool fragments of crust hindering migration of metal to the core. If mantle fragments were much hotter and larger than crustal fragments, little metal would have crystallized around the mantle fragments allowing olivine and molten metal to separate gravitationally. The rapid cooling rates of mesosiderites above 850 °C can be attributed to local thermal equilibration between hot and cold ejecta. Very slow cooling below 400 °C probably reflects the large size of the body and the excellent thermal insulation provided by the reaccreted debris. We infer that our model is more plausible than an earlier model that invoked an impact at ,1 km/s to mix projectile metal with target silicates. If large impacts cannot effectively strip mantles from asteroidal cores, as we infer, we should expect few large eroded asteroids to have surfaces composed purely of mantle or core material. This may help to explain why relatively few olivine-rich (A-type) and metal-rich asteroids (M-type) are known. Some S-type asteroids may be scrambled differentiated bodies. [source] Sandwich structures with composite inserts: Experimental studiesPOLYMER COMPOSITES, Issue 5 2009N.K. Naik Experimental studies are presented on the performance of insert assemblies of the sandwich structures under localized through-the-thickness compressive loading. Through-the-thickness and partially inserted fully potted inserts are studied. Insert materials considered are: aluminum and 3D woven composite. Experimental results are compared with the analytical predictions. It is observed that the specific strength of 3D woven composite inserts is more than that of aluminum inserts. Further, it is observed that the specific strength of through-the-thickness inserts is more than that of partially inserted fully potted inserts. Delamination between upper face plate and core material and sliding of attachment/insert within the core are the main modes of failure initiation. Quantitative results are presented for typical cases. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source] Assessment of online continuing dental education in North CarolinaTHE JOURNAL OF CONTINUING EDUCATION IN THE HEALTH PROFESSIONS, Issue 2 2000Ms. Bonnie Francis RDH Abstract Background: Dental professionals are discovering the unique advantages of asynchronous lifelong learning through continuing dental education (CDE) opportunities offered online. The purpose of this study was to evaluate both the process and outcomes of online CDE in North Carolina. The assessment was designed to provide a better understanding of practicing dental professionals experiences with online CDE and to determine the effectiveness of this learning strategy. Methods: Dental professionals from four North Carolina Area Health Education Centers regions evaluated two pilot online CDE modules in 1998. Thirty-one participants were recruited and subsequently enrolled with 23 completing at least one module. Each module included objectives, a multiple-choice pretest, interactive core material, and a post-test. Participants completed three online surveys measuring individual demographics and computer skill level, module design, and use and overall reaction to online learning. Results: Most participants agreed that the modules were comprehensive, were pleasing in appearance, provided clear instructions, provided adequate feedback, and were easy to navigate. Most participants agreed that knowledge of the material increased. This was validated by a significant increase in mean pre- to post-test scores (p =.0001). Participants agreed that convenience was a definite advantage, and they would choose online courses again to meet their CDE needs. The least-liked aspects included technical and formatting issues. Implications: Participants were enthusiastic about online learning and learned effectively with this teaching strategy, but desired much more interactivity than existed in the current design. [source] Wärme- und Feuchtetransport in VakuumisolationspaneelenBAUPHYSIK, Issue 6 2008Andreas Beck Prof. Dr. Wegen ihrer extrem niedrigen Wärmeleitfähigkeit und der damit verbundenen Möglichkeiten, mit geringen Bauteildicken hochwertig zu dämmen, haben Vakuumisolationspaneele (VIP) innerhalb kurzer Zeit Verbreitung im Bauwesen gefunden , insbesondere in Situationen, in denen andere Dämmstoffe aus Platzgründen nicht in Frage kommen. Da noch keine Langzeiterfahrungen über die Alterung der Paneele vorhanden sind, muss beim Bemessungswert der Wärmeleitfähigkeit im Moment allerdings noch mit hohen Sicherheitszuschlägen gerechnet werden, vor allem wegen des über die Nutzungsdauer stattfindenden Gaseintrags. Besonders von Interesse ist hierbei das Verhalten von aus der Umgebung eindiffundierendem Wasserdampf. Während die Auswirkungen von trockenen Gasen genau bezifferbar sind, überlagern sich beim Stoff- und Wärmetransport durch Wasser verschiedene Vorgänge, die die Wärmeleitung im VIP deutlich erhöhen, aber messtechnisch nur schwer erfassbar sind. Daher wurde ein theoretisches Modell entwickelt, das den Wärmestrom auf Grundlage der kinetischen Gastheorie für Molekularströmung und Oberflächendiffusion beschreibt und darüber hinaus Rückschlüsse auf die Diffusionseigenschaften des Kernmaterials zulässt. Heat and Moisture Transport in Vacuum Insulation Panels. Due to their extremely low thermal conductivity, vacuum insulation panels (VIP) allow for high standard thermal insulation with slim building components. Within few years, this led to widespread use especially in building situations where space is limited. As there are no long-term experiences concerning the thermal characteristics of VIPs, however, their rated values of thermal conductivity are notably higher than the actual measured values at present, which primarily represents effects of degradation caused by gases infiltrating the panel. Most significant is the influence of water vapour diffusing into the VIP. Whereas the effects of dry gases are well known and can be exactly quantified, water vapour causes different processes of heat and matter transfer which increase thermal conduction within the VIP considerably, but which cannot be separated accurately by means of measuring. Thus a theoretical model was developed which describes heat flux basing on the kinetic theory of gases for molecular diffusion and surface diffusion. It moreover provides information about the diffusion characteristics of the core material. [source] Analytical Model for Predicting Thermal Bridge Effects due to Vacuum Insulation Panel Barrier Envelopes,BAUPHYSIK, Issue 1 2008Martin Tenpierik ir. arch. Because of a necessity for sustainability and thus for a reduction of the amount of primary energy generated with fossil fuels, vacuum insulation panels (VIP) have recently caught the attention of practitioners in the building industry. The reduction of layer thickness may be considered among the most promising features for large-scale application of VIPs in buildings. The high barrier laminate (or casing) with relatively high thermal conductivity envelops the core material, thus introducing a thermal bridge at the panel edges and corners. Especially for barrier laminates containing ,thick' metal foils, the thermal bridge effect needs to be considered thoughtfully. In this contribution analytical models are presented which on the one hand allow rapid estimation of the VIP's overall thermal performance and on the other hand show the influence of material and geometric parameters on this performance. The analytical models are validated through numerical simulations. Rechenmodell zur Vorhersage von Wärmebrückeneffekten an der Hülle aus Hochbarrierefolien von Vakuum-Isolations-Paneelen (VIP). Aufgrund der Notwendigkeit von nachhaltigem Bauen und Energieeinsparung wird zunehmend der Einsatz von Vakuum-Isolations-Paneelen (VIP) zur Wärmedämmung im Bauwesen erwogen, insbesondere ist damit die erhebliche Reduzierung der Wärmedämmschichtdicke möglich. Die Umhüllung aus Hochbarrierefolien erfordert allerdings die Berücksichtigung der Wärmebrückenwirkung. Der vorliegende Beitrag stellt Berechnungsmodelle vor, welche einerseits die schnelle Abschätzung des thermischen Verhaltens von VIP-Elementen ermöglichen und andererseits den Einfluss der Geometrie und Konstruktion der Elemente aufzeigen. Die Berechnungsmodelle wurden anhand von Simulationen validiert. [source] Response of the Rhine,Meuse fluvial system to Saalian ice-sheet dynamicsBOREAS, Issue 3 2008FREEK S. BUSSCHERS A new reconstruction of the interaction between the Saalian Drente glaciation ice margin and the Rhine,Meuse fluvial system is presented based on a sedimentary analysis of continuous core material, archived data and a section in an ice-pushed ridge. Optically Stimulated Luminescence (OSL) was applied to obtain independent age control on these sediments and to establish a first absolute chronology for palaeogeographical events prior to and during the glaciation. We identified several Rhine and Meuse river courses that were active before the Drente glaciation (MIS 11-7). The Drente glaciation ice advance into The Netherlands (OSL-dated to fall within MIS 6) led to major re-arrangement of this drainage network. The invading ice sheet overrode existing fluvial morphology and forced the Rhine,Meuse system into a proglacial position. During deglaciation, the Rhine shifted into a basin in the formerly glaciated area, while the Meuse remained south of the former ice limit, a configuration that persisted throughout most of the Eemian and Weichselian periods. An enigmatic high position of proglacial fluvial units and their subsequent dissection during deglaciation by the Meuse may partially be explained by glacio-isostatic rebound of the area, but primarily reflects a phase of high base level related to a temporary proglacial lake in the southern North Sea area, with lake levels approximating modern sea levels. Our reconstruction indicates that full ,opening' of the Dover Strait and lowering of the Southern Bight, enabling interglacial marine exchange between the English Channel and the North Sea, is to be attributed to events during the end of MIS 6. [source] Early Holocene drowned lagoonal deposits from the Kattegat, southern ScandinaviaBOREAS, Issue 4 2000OLE BENNIKE Shallow seismic profiling indicated the presence of a drowned lagoon,barrier system formed during the transgression of the southern Kattegat, and investigations of core material have confirmed this. Studies of plant and animal macrofossils show that the lagoonal sediments contain a mixture of marine, brackish, lacustrine, telmatic and terrestrial taxa, and analyses of foraminifers indicate brackish-water conditions. Low oxygen isotope values obtained on shells of marine molluscs also point to lowered salinity. The lagoonal sediments are situated at depths between 24 and 35 m below present sea level. They are dated to between c. 10.5 cal. ka BP and c. 9.5 cal. ka BP, and reflect a period characterized by a moderate relative sea level rise. The lagoonal sediments are underlain by lateglacial glaciomarine clay and silt, which are separated from the Holocene deposits by an unconformity. The earliest Holocene sediments consist of littoral sand with gravel, stones and shells; these sediments were formed during the transgression of the area before the barrier island,lagoon system was developed. The lagoonal sediments are overlain by mud, which contains animal remains that indicate increasing water depths. [source] Experimental Investigation of Performances of Microcapsule Phase Change Material for Thermal Energy StorageCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 2 2010G. Fang Abstract Performances of microcapsule phase change material (MPCM) for thermal energy storage are investigated. The MPCM for thermal energy storage is prepared by a complex coacervation method with gelatin and acacia as wall materials and paraffin as core material in an emulsion system. A scanning electron microscope (SEM) was used to study the microstructure of the MPCM. In thermal analysis, a differential scanning calorimeter (DSC) was employed to determine the melting temperature, melting latent heat, solidification temperature, and solidification latent heat of the MPCM for thermal energy storage. The SEM micrograph indicates that the MPCM has been successfully synthesized and that the particle size of the MPCM is about 81 ,m. The DSC output results show that the melting temperature of the MPCM is 52.05,°C, the melting latent heat is 141.03 kJ/kg, the solidification temperature is 59.68,°C, and the solidification latent heat is 121.59 kJ/kg. The results prove that the MPCM for thermal energy storage has a larger phase change latent heat and suitable phase change temperature, so it can be considered as an efficient thermal energy storage material for heat utilizing systems. [source] Chancen und Grenzen der Mikroverkapselung in der modernen LebensmittelverarbeitungCHEMIE-INGENIEUR-TECHNIK (CIT), Issue 11 2003B. Kunz Prof. Dr. Abstract Die Mikroverkapselung ist in der Lebensmittelindustrie immer bedeutender geworden, besonders im Bereich der funktionellen Lebensmittel und der Nahrungsergänzungsmittel. Die Verkapselung dient dem Schutz des eingeschlossenen Materials vor schädlichen Einflüssen. Das Verfahren birgt ein großes Potenzial für die Entwicklung neuer Produkte. Der Einschluss von ernährungsphysiologisch positiv zu bewertenden Substanzen führt zu Produkten mit einem zusätzlichen gesundheitlichen Nutzen (Added Value). Obwohl die Mikroverkapselung sich erst am Anfang ihrer Entwicklung befindet, ist es sinnvoll, die Chancen und Risiken dieser vielversprechenden Technologie abzuschätzen. Der Beitrag gibt einen Überblick über die Möglichkeiten der Mikroverkapselung in der Lebensmittelindustrie und zeigt zugleich die Grenzen der neuen Technologie auf. Chances and Limits of Microencapsulation in Progressive Food Industry Microencapsulation has gained importance in food technology especially in coevolution with the developments in functional food and dietary supplements. The aim of microencapsulation is to protect the core material from harsh conditions, so that it keeps its nutritional value. Although microencapsulation is in an early state of development, it seems to be necessary to evaluate the chances and risks of this technology. Because of the effects which can be reached by using the microencapsulation process there seems to be a great potential for the developments of new products or products with an added value. This contribution reviews the chances of microencapsulation in the food industry and tries to present and evaluate the limits of this new technology. [source] Biocompatibility of Lotus-type Stainless Steel and Titanium in Alveolar BoneADVANCED ENGINEERING MATERIALS, Issue 9 2006Y. Higuchi Abstract Lotus-type porous stainless steel (SUS304L) and porous titanium were fabricated by unidirectional solidification in a mixture gas of hydrogen and argon. The porous metals which were cut into 5,mm cubes (non-dehydrogenated) and 3.4,mm,,×,5,mm cylinders (dehydrogenated) were implanted into the canine mandible alveolar bone for two, four and eight weeks for animal experiments. The changes in the tissues were observed using SEM. For porous stainless steel (cylindrical; dehydrogenated) new formation of bones was observed around the sample in two weeks without any sign of bony ingrowth into the pores. The osteogenesis was found in shallow areas in the pores in four weeks and deep in the pores in eight weeks. Porous titanium, on the other hand, showed deep ingrowth of new bones in four weeks. Our observations allowed us to expect application of the porous metals as biomaterials. They maintain mechanical strength and are lighter in weight so that it is expected to be applied for dental implants and core materials of artificial bones. [source] One-Step Preparation of Coaxial CdS,ZnS and Cd1,xZnxS,ZnS Nanowires,ADVANCED FUNCTIONAL MATERIALS, Issue 8 2005Y.-J. Hsu Abstract Preparation of coaxial (core,shell) CdS,ZnS and Cd1,xZnxS,ZnS nanowires has been achieved via a one-step metal,organic chemical vapor deposition (MOCVD) process with co-fed single-source precursors of CdS and ZnS. Single-source precursors of CdS and ZnS of sufficient reactivity difference were prepared and paired up to form coaxial nanostructures in a one-step process. The sequential growth of ZnS on CdS nanowires was also conducted to demonstrate the necessity and advantages of the precursor co-feeding practice for the formation of well-defined coaxial nanostructures. The coaxial nanostructure was characterized and confirmed by high-resolution transmission electron microscopy and corresponding energy dispersive X-ray spectrometry analyses. The photoluminescence efficiencies of the resulting coaxial CdS,ZnS and Cd1,xZnxS,ZnS nanowires were significantly enhanced compared to those of the plain CdS and plain Cd1,xZnxS nanowires, respectively, owing to the effective passivation of the surface electronic states of the core materials by the ZnS shell. [source] Influence of abutment substrate and ceramic thickness on the colour of heat-pressed ceramic crownsJOURNAL OF ORAL REHABILITATION, Issue 9 2002T. NAKAMURA Summary All-ceramic crowns made of leucite-based heat-pressed ceramics are widely used to restore non-vital teeth in conjunction with various post and core materials. However, as some light passes through the ceramic, the colour of the abutment substrate can negatively affect the final aesthetic appearance of the all-ceramic crown. In this study, we made background specimens simulating gold-alloy cast posts and other simulating porcelain veneered cast posts, overlaid different thickness of heat-pressed ceramic on these background specimens, and measured the shifts in colour. We found that, when the background specimen was a gold alloy, the background colour had an effect on the apparent colour, unless the ceramic was more than 1·6 mm thick. When the background specimen was porcelain veneered, the background colour had no evident effect, even when the ceramic was not very thick. Therefore, when making a restoration using a leucite-based heat-pressed ceramic crown, it is advisable to use tooth-coloured materials such as a porcelain veneered cast post, if you will not be able to make the ceramic more than 1·6 mm thick. [source] Effect of prefabricated metal post-head design on the retention of various core materialsJOURNAL OF ORAL REHABILITATION, Issue 6 2000M. Zalkind Retention of various post heads to core restorative materials is an important factor in the selection of prefabricated post systems and restorative materials for the restoration of endodontically treated teeth. This study examines the retention of a post,core prefabricated system in relation to core material and post-head design. A total of 60 samples were prepared using two different post systems (ParaPost Plus® (PP) and ParaPost Unity® (PU), with amalgam, composite or glass,ionomer as one of the core materials. The samples were tested using the Instron testing machine. The PP was superior to the PU prefabricated post with respect to the retention of various core materials. Retention values in descending order of magnitude were found to be: composite, amalgam and glass,ionomer (significantly lower). The rhomboid serrated design of PP was superior in retention to the rounded smooth UP system. Composite material proved to be superior in retention, closely followed by amalgam, with glass,ionomer significantly less retentive. [source] Laboratory strength of glass ionomer and zinc phosphate cementsJOURNAL OF PROSTHODONTICS, Issue 3 2001Andree Piwowarczyk Dr med dent Purpose The present in vitro study examined 3 mechanical properties, namely compressive, flexural, and diametral tensile strength, of various commercially available cements and core materials as a function of time after mixing. Materials and Methods The examined materials were 2 cermet cements (Ketac Silver [ESPE, Seefeld, Germany] and Chelon Silver [ESPE]), 1 metal-reinforced glass ionomer cement (Miracle Mix [GC Dental Industrial Corp, Tokyo, Japan]), 2 conventional glass ionomer cements (Ketac Bond [ESPE] and Ketac Cem [ESPE]), 1 standard cure zinc phosphate cement (Harvard Cement [Richter and Hoffmann, Berlin, Germany]), and 1 zinc phosphate cement with the addition of 30% silver amalgam alloy powder (Harvard Cement 70% with Dispersalloy 30% [Richter and Hoffmann/Johnson and Johnson, East Windsor, NJ]). Properties were measured using a universal testing machine at 15 minutes, 1 hour, and 24 hours after first mixing. Results Compressive strengths varied widely between the 3 times of measurement from 5.8 ± 6.6 MPa for Ketac Cem to 144.3 ± 10.2 MPa for Ketac Silver. Twenty-four hours after mixing, the Bonferroni test showed significant (p, .01) differences between Ketac Silver and all other materials tested. Diametral tensile strengths ranged widely from 4.4 ± 0.9 MPa for Ketac Cem to 11.5 ± 2.2 MPa for Chelon Silver. At 15 minutes, 1 hour, and 24 hours after first mixing, the analysis of variance did not show any significant differences between Ketac Silver, Chelon Silver, and Miracle Mix. The 3-point flexural strength of Ketac Silver showed, at 15 minutes with 13.5 ± 3.9 MPa and at 24 hours with 27.2 ± 7.4 MPa, the highest values. Conclusions Setting time influences the mechanical properties of the materials tested in this study. Ketac Silver, a glass ionomer cement reinforced with sintered glass-silver particles, showed the highest mechanical properties of the examined materials. [source] Integrated 3-D model from gravity and petrophysical data at the Bosumtwi impact structure, GhanaMETEORITICS & PLANETARY SCIENCE, Issue 4-5 2007Hernan UGALDE A vast amount of geoscience data is available from the pre-site surveys and the actual drilling phase. A 3-D gravity model was constructed and calibrated with the available data from the two ICDP boreholes, LB-07A and LB-08A. The 3-D gravity model results agree well with both the sediment thickness and size of the central uplift revealed by previously collected seismic data, and with the petrophysical data from the LB-08A and LB-07A core materials and the two borehole logs. Furthermore, the model exhibits lateral density variations across the structure and refines the results from previous 2.5-D modeling. An important new element of the 3-D model is that the thickness of the intervals comprising polymict lithic impact breccia and suevite, monomict lithic breccia and fractured basement is much smaller than that predicted by numerical modeling. [source] Shear bond strength of luting agents to fixed prosthodontic restorative core materialsAUSTRALIAN DENTAL JOURNAL, Issue 4 2009N Capa Abstract Background:, Bonding properties of luting cements are important for retention of restorative core materials. The aim of this study was to compare the bonding performance of a resin-modified glass ionomer cement and a self-adhesive resin cement to various fixed prosthodontic core materials. Methods:, Cylindrical specimens with a thickness of 2 mm and a diameter of 5 mm were fabricated from Au-Pd-Ag, Co-Cr, Ni-Cr-Mo, Ni-Cr-Fe alloys, titanium, zirconia and Empress II (n = 20). Each group was divided into two subgroups to be luted with two different luting agents. Composite resin blocks were cemented onto specimens with RelyXUnicem and FujiCem. A shear bond strength machine with 50 kg load cell and 0.50 mm/min crosshead speed was used. Kruskal Wallis test, Dunn's Multiple Range test and Mann-Whitney-U test were used for statistical analysis. The results were evaluated in a confidence interval of p < 0.05. Results:, The highest bond strength was obtained between Ni-Cr-Fe-RelyXUnicem (8.22 ± 2.15 MPa) and the lowest was between Empress II-FujiCem (1.48 ± 0.9 MPa). In FujiCem groups, Co-Cr and Ni-Cr-Fe showed significantly higher bond strength than Au-Pd-Ag and Empress II. In RelyX Unicem groups, Ni-Cr-Fe showed higher bond strength than Empress II. Conclusions:, The types of luting agents and restorative core materials may have a significant influence on bond strength. [source] Preparation of Core,Shell-Structured Nanoparticles (with a Noble-Metal or Metal Oxide Core and a Chromia Shell) and Their Application in Water Splitting by Means of Visible LightCHEMISTRY - A EUROPEAN JOURNAL, Issue 26 2010Kazuhiko Maeda Dr. Abstract Core,shell-structured nanoparticles, consisting of a noble metal or metal oxide core and a chromia (Cr2O3) shell, were studied as promoters for photocatalytic water splitting under visible light. Core nanoparticles were loaded by impregnation, adsorption or photodeposition onto a solid solution of gallium nitride and zinc oxide (abbreviated GaN:ZnO), which is a particulate semiconductor photocatalyst with a band gap of approximately 2.7,eV, and a Cr2O3 shell was formed by photodeposition using a K2CrO4 precursor. Photodeposition of Cr2O3 on GaN:ZnO modified with a noble metal (Rh, Pd and Pt) or metal oxide (NiOx, RuO2 and Rh2O3) co-catalyst resulted in enhanced photocatalytic activity for overall water splitting under visible light (,>400,nm). This enhancement in activity was primarily due to the suppression of undesirable reverse reactions (H2,O2 recombination and/or O2 photoreduction) and/or protection of the core component from chemical corrosion, depending on the core type. Among the core materials examined, Rh species exhibited relatively high performance for this application. The activity for visible-light water splitting on GaN:ZnO modified with an Rh/Cr2O3 core,shell configuration was dependent on both the dispersion of Rh nanoparticles and the valence state. In addition, the morphology of the Cr2O3 photodeposits was significantly affected by the valence state of Rh and the pH at which the photoreduction of K2CrO4 was conducted. When a sufficient amount of K2CrO4 was used as the precursor and the solution pH ranged from 3 to 7.5, Cr2O3 was successfully formed with a constant shell thickness (,2,nm) on metallic Rh nanoparticles, which resulted in an effective promoter for overall water splitting. [source] |