Cord Sections (cord + section)

Distribution by Scientific Domains

Kinds of Cord Sections

  • spinal cord section


  • Selected Abstracts


    Activation of spinal cannabinoid 1 receptors inhibits C-fibre driven hyperexcitable neuronal responses and increases [35S]GTP,S binding in the dorsal horn of the spinal cord of noninflamed and inflamed rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2000
    L. J. Drew
    Abstract The analgesic potential of cannabinoid (CB) receptor agonists is of clinical interest. Improved understanding of the mechanisms of action of cannabinoids at sites involved in the modulation of acute and sustained inflammatory nociceptive transmission, such as the spinal cord, is essential. In vivo electrophysiology was used to compare the effect of the synthetic CB agonist, HU210, on acute transcutaneous electrical-evoked responses of dorsal horn neurons of noninflamed anaesthetized rats and anaesthetized rats with a peripheral carrageenin inflammation. CB receptor G-protein coupling in lumbar spinal cord sections of noninflamed and carrageenin-inflamed rats was studied with in vitro autoradiography of guanylyl 5,-[,-[35S]thio]triphosphate ([35S]GTP,S) binding. Spinal HU210 significantly inhibited the C-fibre-mediated late (300,800 ms) postdischarge response of dorsal horn neurons of noninflamed and carrageenin-inflamed rats; the CB1 receptor antagonist SR141716A blocked the effect of HU210. HU210 had limited effects on A-fibre-evoked dorsal horn neuronal responses of both groups of rats. HU210 significantly increased [35S]GTP,S binding in the dorsal horn of the spinal cord of both groups of rats compared with basal [35S]GTP,S binding; SR141716A blocked these effects. The predominant effect of spinal HU210, via CB1 receptor activation, was on the C-fibre driven postdischarge responses, a measure of neuronal hyperexcitability following repetitive C-fibre stimulation. Sustained, but not enhanced, antinociceptive effects of HU210 following carrageenin inflammation are reported; CB receptor G-protein coupling was not altered by inflammation. These results strengthen the body of evidence suggesting CB agonists may be an important novel analgesic approach for the treatment of sustained pain states. [source]


    Early stages of oligodendrocyte development in the embryonic murine spinal cord proceed normally in the absence of Hoxa2

    GLIA, Issue 1 2004
    Danette J. Nicolay
    Abstract Recent discoveries have enhanced our knowledge of the transcriptional control of oligodendrocyte (OG) development. In particular, the transcription factors (TFs) Olig2, Pax6, and Nkx2.2 have been shown to be important in the specification and/or maturation of the OG lineage. Although numerous other TFs are expressed by OGs, little is known regarding their role(s) in oligodendrogenesis. One such TF is the homeobox gene Hoxa2, which was recently shown to be expressed by O4+ pro-oligodendrocytes. The objectives of this study were to examine the expression of Hoxa2 during the early stages of OG development, as well as to determine whether Hoxa2 is required for specification and/or early maturation of OGs. Immunocytochemical analysis of primary mixed glial cultures demonstrated that Hoxa2 was expressed throughout oligodendrogenesis, diminishing only with the acquisition of a myelinating phenotype. Serial transverse spinal cord sections from embryonic days 12.5, 14.25, 16, and 18 Hoxa2+/+, Hoxa2+/,, and Hoxa2,/, mice were subjected to single and double immunohistochemical analysis in order to examine Hoxa2, Olig2, Nkx2.2, and Pax6 expression profiles. Results obtained from Hoxa2+/+ and Hoxa2+/, mice suggested that Hoxa2 was expressed by migratory oligodendroglial cells. In addition, comparison of spinal cord sections obtained from Hoxa2+/+, Hoxa2+/,, and Hoxa2,/, mice suggested that specification and early maturation of OGs proceeded normally in the absence of Hoxa2, since there were no obvious alterations in the expression patterns of Olig2, Nkx2.2, and/or Pax6. Hence, although Hoxa2 is expressed throughout OG development, it does not appear to be critical for early stages of oligodendrogenesis in the murine spinal cord. © 2004 Wiley-Liss, Inc. [source]


    Evidence for enhanced functional activity of cervical cord in relapsing multiple sclerosis

    MAGNETIC RESONANCE IN MEDICINE, Issue 5 2008
    F. Agosta
    Abstract Functional MRI (fMRI) was used to assess proprioceptive-associated cervical cord activity in 24 relapsing multiple sclerosis (MS) patients and 10 controls. Cord and brain conventional and diffusion tensor (DT) MRI were also acquired. fMRI was performed using a block design during a proprioceptive stimulation consisting of a passive flexion-extension of the right upper limb. Cord lesion number, cross-sectional area, mean diffusivity (MD) and fractional anisotropy (FA), whole brain and left corticospinal tract lesion volume (LV), gray matter (GM) MD, and normal-appearing white matter (NAWM) MD and FA were calculated. MS patients had higher average cord fMRI signal changes than controls (3.4% vs. 2.7%, P = 0.03). Compared to controls, MS patients also had a higher average signal change in the anterior section of the right cord at C5 (P = 0.005) and left cord at C5,C6 (P = 0.03), whereas no difference was found in the other cord sections. Cord average signal change correlated significantly with cord FA and brain left corticospinal tract LV, GM-MD, and NAWM-FA. This study shows an abnormal pattern of activations in the cervical cord of MS patients following proprioceptive stimulation. Cord fMRI changes might have a role in limiting the clinical consequences of MS associated with irreversible tissue damage. Magn Reson Med 59:1035,1042, 2008. © 2008 Wiley-Liss, Inc. [source]


    Flaviviruses in motor neuron disease

    MUSCLE AND NERVE, Issue 1 2005
    Roger Pamphlett MD
    Abstract Sporadic motor neuron disease (MND) causes a progressive loss of motor neurons. West Nile virus can attack motor neurons, so we examined whether flavivirus infection could be detected in MND cases. Spinal cord sections from 22 MND cases were stained immunohistochemically with a flavivirus-specific antibody. No staining for flavivirus was seen in any case. Sporadic MND does not appear to arise from a recent infection with a flavivirus. Muscle Nerve, 2005 [source]