Copper-binding Domain (copper-binding + domain)

Distribution by Scientific Domains


Selected Abstracts


Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvacea

FEBS JOURNAL, Issue 2 2004
Shicheng Chen
We have isolated a laccase (lac1) from culture fluid of Volvariella volvacea, grown in a defined medium containing 150 µm CuSO4, by ion-exchange and gel filtration chromatography. Lac1 has a molecular mass of 58 kDa as determined by SDS/PAGE and an isoelectric point of 3.7. Degenerate primers based on the N-terminal sequence of purified lac1 and a conserved copper-binding domain were used to generate cDNA fragments encoding a portion of the lac1 protein and RACE was used to obtain full-length cDNA clones. The cDNA of lac1 contained an ORF of 1557 bp encoding 519 amino acids. The amino acid sequence from Ala25 to Asp41 corresponded to the N-terminal sequence of the purified protein. The first 24 amino acids are presumed to be a signal peptide. The expression of lac1 is regulated at the transcription level by copper and various aromatic compounds. RT-PCR analysis of gene transcription in fungal mycelia grown on rice-straw revealed that, apart from during the early stages of substrate colonization, lac1 was expressed at every stage of the mushroom developmental cycle defined in this study, although the levels of transcription varied considerably depending upon the developmental phase. Transcription of lac1 increased sharply during the latter phase of substrate colonization and reached maximum levels during the very early stages (primordium formation, pinhead stage) of fruit body morphogenesis. Gene expression then declined to ,,20,30% of peak levels throughout the subsequent stages of sporophore development. [source]


Structure of Alzheimer's disease amyloid precursor protein copper-binding domain at atomic resolution

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2007
Geoffrey Kwai-Wai Kong
Amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease, as its cleavage generates the A, peptide that is toxic to cells. APP is able to bind Cu2+ and reduce it to Cu+ through its copper-binding domain (CuBD). The interaction between Cu2+ and APP leads to a decrease in A, production and to alleviation of the symptoms of the disease in mouse models. Structural studies of CuBD have been undertaken in order to better understand the mechanism behind the process. Here, the crystal structure of CuBD in the metal-free form determined to ultrahigh resolution (0.85,Å) is reported. The structure shows that the copper-binding residues of CuBD are rather rigid but that Met170, which is thought to be the electron source for Cu2+ reduction, adopts two different side-chain conformations. These observations shed light on the copper-binding and redox mechanisms of CuBD. The structure of CuBD at atomic resolution provides an accurate framework for structure-based design of molecules that will deplete A, production. [source]


Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi

INSECT MOLECULAR BIOLOGY, Issue 2 2000
L. Cui
Abstract Some refractory anopheline mosquitoes are capable of killing Plasmodium, the causative agent of malaria, by melanotic encapsulation of invading ookinetes. Phenoloxidase (PO) appears to be involved in the formation of melanin and toxic metabolites in the surrounding capsule. A cDNA encoding Anopheles stephensi prophenoloxidase (Ans-proPO) was isolated from a cDNA library screened with an amplimer produced by reverse transcriptase polymerase chain reaction (RT-PCR) with degenerate primers designed against conserved proPO sequences. The 2.4-kb-long cDNA has a 2058 bp open reading frame encoding Ans-proPO of 686 amino acids. The deduced amino acid sequence shows significant homology to other insect proPO sequences especially at the two putative copper-binding domains. In A. stephensi, Ans-proPO expression was detected in larval, pupal and adult stages. The Ans-proPO mRNA was detected by RT-PCR and in situ hybridization in haemocytes, fat body and epidermis of adult female mosquitoes. A low level of expression was detected in the ovaries, whereas no expression was detected in the midguts. Semi-quantitative RT-PCR analysis of Ans-proPO mRNA showed that its expression was similar in adult female heads, thoraxes and abdomens. No change in the level of Ans-proPO expression was found in adult females after blood feeding, bacterial challenge or Plasmodium berghei infection. However, elevated PO activity was detected in P. berghei -infected mosquitoes, suggesting that in non-selected permissive mosquitoes PO may be involved in limiting parasite infection. Genomic Southern blot and immunoblots suggest the presence of more than one proPO gene in the A. stephensi genome, which is consistent with the findings in other Diptera and Lepidoptera species. The greatest similarity in sequence and expression profile between Ans-proPO and A. gambiae proPO6 suggests that they might be homologues. Our results demonstrate that Ans-proPO is constitutively expressed through different developmental stages and under different physiological conditions, implying that other factors in the proPO activation cascade regulate melanotic encapsulation. [source]