Copolymer Poly (copolymer + poly)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Copolymer Poly

  • block copolymer poly
  • diblock copolymer poly


  • Selected Abstracts


    Synthesis of Random Copolymers Poly (methylmethacrylate- co -azo monomer) by ATRP-AGET

    MACROMOLECULAR SYMPOSIA, Issue 1 2009
    M.A. Nájera
    Abstract The synthesis of the azo molecule 1-(2-(4-nitrophenyl) diazenyl) naphtalen-2-ol which has been functionalized with a methacryloxyl fraction is now reported. This azo monomer was copolymerized with methyl methacrylate (MMA) by ATRP where the active species is prepared "in situ" after the reduction reaction of the metal complex Cu (II) - HMTETA by tin 2-ethylhexanoate in 2-butanone as solvent. Experimental conditions for the controlled homopolymerization of MMA were established. By adjusting the amount of reducing agent, a good correlation between theoretical and experimental molecular weight was obtained. Such conditions were also employed for the random copolymerization of MMA with the synthesized azo monomer. [source]


    Anticancer Drug Delivery: Doxorubicin-Conjugated Immuno-Nanoparticles for Intracellular Anticancer Drug Delivery (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
    Mater.
    Self-assembled polymeric nanoparticles of the amphiphilic copolymer poly(TMCC-co-LA)-g-PEG-furan can couple both anti-HER2 antibodies and chemotherapeutic doxorubicin (DOX) on their surfaces, report Molly Shoichet and co-workers on page 1689. This novel strategy selectively delivers DOX to the cell nucleus of HER2-overexpressing breast cancer cells while maintaining the pharmaceutical toxicity of DOX, paving the way to targeted drug delivery in breast cancer treatment. [source]


    A New Donor,Acceptor,Donor Polyfluorene Copolymer with Balanced Electron and Hole Mobility,

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2007
    A. Gadisa
    Abstract A new alternating polyfluorene copolymer poly[2,7-(9,9-dioctylfluoren)- alt -5,5-(5,,8,-di-2-thienyl-(2,,3,-bis-(3,,-octyloxyphenyl)-quinoxaline))] (APFO-15), which has electron donor,acceptor,donor units in between the fluorene units, is synthesized and characterized. This polymer has a strong absorption and emission in the visible range of the solar spectrum. Its electroluminescence and photoluminescence emissions extend from about 560 to 900 nm. Moreover, solar cells with efficiencies in excess of 3.5,% have been realized from blends of APFO-15 and an electron acceptor molecule, a methanofullerene [6,6]-phenyl-C61 -butyric acid methyl ester (PCBM). It has also been observed that electron and hole transport is balanced both in the pure polymer phase and in polymer/PCBM bulk heterojunction films, which makes this material quite attractive for applications in opto-electronic devices. [source]


    Spontaneous Vertical Ordering and Pyrolytic Formation of Nanoscopic Ceramic Patterns from Poly(styrene- b -ferrocenylsilane),

    ADVANCED MATERIALS, Issue 4 2003
    K. Temple
    The rapid generation of nanopatterned surfaces using thin films of the amorphous diblock copolymer poly(styrene- b -ferrocenylethylmethylsilane) (PS- b -PFS) is reported. Spontaneous self-assembly into vertically oriented cylinders of PFS in a PS matrix is observed on a variety of substrates by spin or dip coating, irrespective of the substrate surface polarity. Pyrolysis of the films affords arrays of 20 nm Fe-containing ceramic nanoparticles, (see Figure, AFM, 4 ,m2 scan area). [source]


    Application of the biodegradable diblock copolymer poly(L -lactide)- block -poly(L -cysteine): Drug delivery and protein conjugation

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
    Jing Sun
    Abstract A novel approach to self-assembled and shell-crosslinked (SCL) micelles from the diblock copolymer poly(L -lactide)- block -poly(L -cysteine) to be used as drug and protein delivery carriers is described. Rifampicin was used as a model drug. The drug-loaded SCL micelles were obtained by self-assembly of the copolymer in the presence of the drug in aqueous media. Their morphology and size were studied with dynamic light scattering and field emission scanning electron microscopy. The rifampicin loading capacity and encapsulation efficiency were studied with ultraviolet,visible spectrophotometry. The drug-release rate in vitro depended on the oxidizing and reducing environment. Moreover, a straightforward approach to the conjugation of the copolymer with bovine serum albumin (BSA) was developed, and a gel electrophoresis test demonstrated that this conjugated BSA could be reversibly released from the copolymer substrate under reducing conditions. In conclusion, this L -cysteine copolymer can be used in drug delivery and in protein fixation and recovery. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Interaction between the fluorinated amphiphilic copolymer poly(2,2,3,4,4,4-hexafluorobutyl methacrylate)- graft -poly(SPEG) and DNA

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2010
    Ling Li
    Abstract A synthesized copolymer, synthesized from HFMA (hexaflurobutyl methacrylate) and SPEG (PHFMA- g -PSPEG), was synthesized. PHFMA- g -PSPEG intercalated to the DNA base pair via a strong hydrophobic force, and this was conformed by ultraviolet spectroscopy, transmittance measurements, micropolarity measurements, resonance light scattering (RLS) spectroscopy, and particle size measurements. The copolymer was used as a new probe to detect DNA according to the RLS technique. The hydrophobic interaction between PHFMA- g -PSPEG and DNA significantly enhanced the RLS signal, and the enhanced RLS intensity at 422 nm was proportional to the nucleic acid concentration within the range of 0.09,0.90 mg/L with a detection limit (3,) of 4.0 ,g/L. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2005
    Davide Dionisi
    Abstract The production of polyhydroxyalkanoates (PHAs) from organic acids by mixed bacterial cultures using a process based on aerobic enrichment of activated sludge, that selects for mixed microbial cultures able to store PHAs at high rates and yields, is described. Enrichment resulted from the selective pressure established by periodic feeding the carbon source in a sequencing batch reactor (SBR); a mixture of acetic, lactic and propionic acids was fed at high frequency (2 hourly), high dilution rate (1 d,1), and at high organic load rate (12.75 g chemical oxygen demand (COD) L,1 d,1). The performance of the SBR was assessed by microbial biomass and PHA production as well as the composition and polymer content of the biomass. A final batch stage was used to increase the polymer concentration of the excess sludge produced in the SBR and in which the behaviour of the biomass was investigated by determining PHA production rates and yields. The microbial biomass selected in the SBR produced PHAs at high rate [278 mg PHAs (as COD) g biomass (as COD),1 h,1, with a yield of 0.39 mg PHAs (as COD) mg removed substrates (as COD),1], reaching a polymer content higher than 50% (on a COD basis). The stored polymer was the copolymer poly(3-hydroxybutyrate/3-hydroxyvalerate) [P(HB/HV)], with an HV fraction of 18% mol mol,1. The microbial community selected in the SBR was analysed by DGGE (denaturing gradient gel electrophoresis). The operating conditions of the SBR were shown to select for a restricted microbial population which appeared quite different in terms of composition with respect to the initial microbial cenosis in the activated sludge used as inoculum. On the basis of the sequencing of the major bands in the DGGE profiles, four main genera were identified: a Methylobacteriaceae bacterium, Flavobacterium sp, Candidatus Meganema perideroedes, and Thauera sp. The effects of nitrogen depletion (ie absence of growth) and pH variation were also investigated in the batch stage and compared with the SBR operative mode. Absence of growth did not stimulate higher PHA production, so indicating that the periodic feed regime fully exploited the storage potential of the enriched culture. Polymer production rates remained high between pH 6.5 and 9.5, whereas the HV content in the stored polymer strongly increased as the pH value increased. This study shows that polymer composition in the final batch stage can readily be controlled independently from the feed composition in the SBR. Copyright © 2005 Society of Chemical Industry [source]


    Behaviors of self-assembled diblock copolymer with pendant photosensitive azobenzene segments

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2010
    Jui-Hsiang Liu
    Abstract A novel monomer, ethyl 4-[4-(11-methacryloyloxyundecyloxy)phenyl azobenzoyl-oxyl] benzoate, containing a photoisomerizable NN group was synthesized. The monomer was further diblock copolymerized with methyl methacrylate. Amphiphilic diblock copolymer poly(methyl methacrylate- block -ethyl 4-[4-(11-methacryloyloxyundecyloxy)phenyl azobenzoyl-oxyl] benzoate (PMMA - b - PAzoMA) was synthesized using atom transfer radical polymerization. The reverse micelles with spherical construction were obtained with 2 wt % of the diblock copolymer in a THF/H2O mixture of 1:2. Under alternating UV and visible light illumination, reversible changes in micellar structure between sphere and rod-like particles took place as a result of the reversible E-Z photoisomerization of azobenzene segments in PMMA - b - PAzoMA. Microphase separation of the amphiphilic diblock copolymer in thin films was achieved through thermal and solvent aligning methods. The microphases of the annealed thin films were investigated using atom force microscopy topology and scanning electron microscopy analyses. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1142,1148, 2010 [source]


    Synthesis and characterization of side-chain liquid crystalline ABC triblock copolymers with p -methoxyazobenzene moieties by atom transfer radical polymerization

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2008
    Xiaohua He
    Abstract A series of novel side-chain liquid crystalline ABC triblock copolymers composed of poly(ethylene oxide) (PEO), polystyrene (PS), and poly[6-(4-methoxy-4,-oxy-azobenzene) hexyl methacrylate] (PMMAZO) were synthesized by atom transfer radical polymerization (ATRP) using CuBr/1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) as a catalyst system. First, the bromine-terminated diblock copolymer poly(ethylene oxide)- block -polystyrene (PEO-PS-Br) was prepared by the ATRP of styrene initiated with the macro-initiator PEO-Br, which was obtained from the esterification of PEO and 2-bromo-2-methylpropionyl bromide. An azobenzene-containing block of PMMAZO with different molecular weights was then introduced into the diblock copolymer by a second ATRP to synthesize the novel side-chain liquid crystalline ABC triblock copolymer poly(ethylene oxide)- block -polystyrene- block -poly[6-(4-methoxy-4,-oxy-azobenzene) hexyl methacrylate] (PEO-PS-PMMAZO). These block copolymers were characterized using proton nuclear magnetic resonance (1H NMR) and gel permeation chromatograph (GPC). Their thermotropic phase behaviors were investigated using differential scanning calorimetry (DSC) and polarized optical microscope (POM). These triblock copolymers exhibited a smectic phase and a nematic phase over a relatively wide temperature range. At the same time, the photoresponsive properties of these triblock copolymers in chloroform solution were preliminarily studied. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4442,4450, 2008 [source]


    Synthesis of silicon nitride based ceramic nanoparticles by the pyrolysis of silazane block copolymer micelles

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 15 2006
    Kozo Matsumoto
    Abstract Diblock copolymer poly(1,1,3,N,N,-pentamethyl-3-vinylcyclodisilazane)- block- polystyrene (polyVSA- b -polySt) and triblock copolymer poly(1,1,3,N,N,-pentamethyl-3-vinylcyclodisilazane)- block- polystyrene- block -poly(1,1,3,N,N,-pentamethyl-3-vinylcyclodisilazane) (polyVSA- b -polySt- b -polyVSA), consisting of silazane and nonsilazane segments, were prepared by the living anionic polymerization of 1,1,3,N,N,-pentamethyl-3-vinylcyclodisilazane and styrene. PolyVSA- b -polySt formed micelles having a poly(1,1,3,N,N,-pentamethyl-3-vinylcyclodisilazane) (polyVSA) core in N,N -dimethylformamide, whereas polyVSA- b -polySt and polyVSA- b -polySt- b -polyVSA formed micelles having a polyVSA shell in n -heptane. The micelles with a polyVSA core were core-crosslinked by UV irradiation in the presence of diethoxyacetophenone as a photosensitizer, and the micelles with a polyVSA shell were shell-crosslinked by UV irradiation in the presence of diethoxyacetophenone and 1,6-hexanedithiol. These crosslinked micelles were pyrolyzed at 600 °C in N2 to give spherical ceramic particles. The pyrolysis process was examined by thermogravimetry and thermogravimetry/mass spectrometry. The morphologies of the particles were analyzed by atomic force microscopy and transmission electron microscopy. The chemical composition of the pyrolysis products was analyzed by X-ray fluorescence spectroscopy and Raman scattering spectroscopy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4696,4707, 2006 [source]


    Nonaqueous dispersion polymerization of styrene in methanol with the ionomer block copolymer poly[(4-methylstyrene)- co -(4-vinyltriethylbenzyl ammonium bromide)]- b -polyisobutene as a stabilizer

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 11 2004
    Yuhong Ma
    Abstract The nonaqueous dispersion polymerization of styrene in methanol with poly[(4-methylstyrene)- co -(4-vinyltriethylbenzyl ammonium bromide)]- b -polyisobutene as a stabilizer was investigated. There was no observable inducing period or autoacceleration in the polymerization process. The conversion increased almost linearly with the polymerization time as high as 80%. The average sizes of the obtained polystyrene particles increased, and the size distributions of the polystyrene particles tended to become narrower, with increasing conversion. The mechanism of the dispersion polymerization in the presence of polyisobutene- b -poly[(4-methylstyrene)- co -(4-vinyltriethylbenzyl ammonium bromide)] was nucleation/growth. When the stabilizer/monomer ratio (w/w) was greater than 2.0%, the polystyrene dispersion was stable, and there was no observable polymer particle coagulation taking place during the whole polymerization process. The average diameter of the polymer particles can be mediated through changes in the polymerization conversion, monomer, and stabilizer. Nearly monodispersed polystyrene particles with average diameters of approximately 0.45,2.21 ,m were obtained under optimal conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2678,2685, 2004 [source]


    Atom transfer radical homo- and block copolymerization of methyl 1-bicyclobutanecarboxylate

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 12 2002
    Xiao-Ping Chen
    Abstract A non-olefinic monomer, methyl 1-bicyclobutanecarboxylate (MBC), was successfully polymerized by the controlled/"living" atom transfer radical polymerization (ATRP) technique, resulting in a well-defined homopolymer, PMBC, with only cyclobutane ring units in the polymer chain. An AB block copolymer poly(methyl 1-bicyclobutanecarboxylate)- b -polystyrene (PMBC- b -PS), having an all-ring unit segment, was also synthesized with narrow polydispersity and designed number-average molecular weight in addition to precise end groups. The 1H NMR spectra, glass-transition temperature, and thermal stability of PMBC, PMBC- b -PS, and PS- b -PMBC were investigated. The experimental results showed that the cyclobutane rings in the two block polymers improved their thermal stability. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1929,1936, 2002 [source]


    Processability and characterization of poly(vinyl chloride)- b -poly(n -butyl acrylate)- b -poly(vinyl chloride) prepared by living radical polymerization of vinyl chloride.

    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, Issue 4 2006
    Comparison with a flexible commercial resin formulation prepared with PVC, dioctyl phthalate
    This work reports the synthesis and processing of a new flexible material based on PVC produced by living radical polymerization. The synthesis was carried out in a two-step process. In the first step the macroinitiator ,, ,-di(iodo)poly(butyl acrylate) [,, ,-di(iodo)PBA] was synthesized in water by single electron transfer/degenerative chain transfer mediated living radical polymerization (SET-DTLRP) catalyzed by Na2S2O4. In the second step this macroinitiator was reinitiated by SET-DTLRP of vinyl chloride (VC), thereby leading to the formation of the block copolymer poly(vinyl chloride)- b -poly(butyl acrylate)- b -poly(vinyl chloride) [PVC- b -PBA- b -PVC]. This new material was processed on a laboratory scale. The DMTA traces showed only a single glass transition temperature, thus indicating that no phase segregation was present. The copolymers were studied with regard to their processing, miscibility, and mechanical properties. The first comparison with commercial formulations made with PVC and dioctyl phthalate (DOP) is presented. J. VINYL ADDIT. TECHNOL., 12:156,165, 2006. © 2006 Society of Plastics Engineers [source]


    Ultrasonochemical-assisted fabrication and evaporation- induced self-assembly (EISA) of POSS-SiO2@Ag core/ABA triblock copolymer nanocomposite film

    POLYMER COMPOSITES, Issue 9 2010
    Murugan Veerapandian
    Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane (POSS) (Mn = 5576.6 g/mol) alloying agent stabilized amphiphilic silica@silver metalloid nanocomposite blended with a triblock copolymer poly(p -dioxanone- co -caprolactone)- block -poly(ethylene oxide)- block -poly(p -dioxanone- co -caprolactone) (POSS-SiO2@Ag/PPDO- co -PCL- b -PEG- b -PPDO- co -PCL) has been synthesized in both water and in organic medium utilizing ultrasonochemical reaction. The POSS stabilized pre-made metalloid was successfully dispersed in amphiphilic PPDO- co -PCL- b -PEG- b -PPDO- co -PCL (ABA) triblock copolymer matrix of molecular weight 45.9 × 104 g/mol. The mechanism of synthesis of high concentration of SiO2@Ag nanocomposite from TEOS/AgNO3 (in the presence of NH4OH as catalyst/NaBH4 as reductant) nonmetal/metal precursors and the successful EISA of POSS-SiO2@Ag/ABA nanocomposite into films has been discussed. The successful synthesis of metalloid nanocomposite was morphologically accessed by field emission-scanning electron microscopy, transmission electron microscopy and atomic force microscopy. Surface plasmon resonance was ensured from UV,visible spectral analysis. Identity and the crystallinity of as prepared nanocomposite were studied by X-ray diffractometer. Structural and luminescence properties of the nanocomposite were examined by Fourier transform infrared spectroscopy and photoluminescence. Thermogravimetric analysis was carried out to study the thermal stability of the resulting hybrid nanocomposite. The resultant inorganic,organic nanocomposite can be easily suspended in water and would be useful in variety of applications. POLYM. COMPOS., 31:1620,1627, 2010. © 2009 Society of Plastics Engineers [source]


    The study of the miscibility and morphology of poly(styrene-co-4-vinylphenol)/poly(propylene carbonate) blends

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 8 2004
    Furong Qiu
    Abstract Blends of poly(propylene carbonate) (PPC) with copolymer poly(styrene-co-4-vinyl phenol) (STVPh) have been studied by electron spin resonance (ESR) spin probe method and Raman spectroscopy. The ESR results indicated that the nitroxide radical existed in a PPC-rich and an STVPh-rich micro domain in the blends, corresponding to the fast-motion and slow-motion component in the ESR spectra, respectively. And in the temperature dependence composite spectra, the fast-motion fraction increased with increasing the hydroxyl group content in copolymer STVPh. Moreover, the ESR parameter T5mT, rotational correlation times (,c) and activation energies (Ea) showed similar dependence on the hydroxyl group content as the fast-motion fraction. It resulted from the enhancement of the hydrogen-bonding interaction between the hydroxyl groups in STVPh and the carboxyl groups and ether oxygen in PPC. However, the distinct band shift and intensity change among the Raman spectra of pure polymer components and those of the blends were observed. In the carboxyl-stretching region, the band shifted to lower frequency with increasing the hydroxyl groups. Furthermore, the phase morphologies of the blends were obtained by optical microscopy. All could be concluded that the hydrogen-bonding interaction between the two components was progressively favorable to the mixing process and was the driving force for the miscibility enhancement in the blends. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Glucose oxidase electrodes of polyaniline, poly(o -toluidine) and their copolymer as a biosensor: a comparative study

    POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 6 2004
    D. D. Borole
    Abstract A simple technique is described for constructing a glucose sensor by the entrapment of glucose oxidase (GOD) in a polyaniline (PA), poly(o -toluidine) (POT) and their copolymer poly(aniline-co- o -toluidine) (PA-co-POT) thin films, which were electrochemically deposited on a platinum plate in phosphate and acetate buffer. The maximum current response was observed for PA, POT, and PA-co-POT GOD electrodes at pH 5.5 and potential 0.60,V (v. Ag/AgCl). The phosphate buffer gives fast response as compared to acetate buffer in amperometric measurements. PA GOD electrode shows the fastest response followed by PA-co-POT and POT GOD electrodes. Copyright © 2004 John Wiley & Sons, Ltd. [source]


    Homopolymerization and Copolymerization of Adipic Anhydride with , -Caprolactone Catalyzed by Rare Earth Trisphenolate

    CHINESE JOURNAL OF CHEMISTRY, Issue 3 2007
    Feng Chen
    Abstract The ring-opening polymerization of adipic anhydride and the ring-opening copolymerization of adipic anhydride with , -caprolactone catalyzed by single component rare earth trisphenolate have been reported. The structure of the copolymer poly(CL- b -AA) has been characterized by SEC, 1H NMR and DSC. [source]


    Photophysics and Photocurrent Generation in Polythiophene/Polyfluorene Copolymer Blends

    ADVANCED FUNCTIONAL MATERIALS, Issue 19 2009
    Christopher R. McNeill
    Abstract Here, studies on the evolution of photophysics and device performance with annealing of blends of poly(3-hexylthiophene) with the two polyfluorene copolymers poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(3-hexylthien-5-yl)-2,1,3-benzothiadiazole]-2,,2,,-diyl) (F8TBT) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) are reported. In blends with F8TBT, P3HT is found to reorganize at low annealing temperatures (100,°C or below), evidenced by a redshift of both absorption and photoluminescence (PL), and by a decrease in PL lifetime. Annealing to 140,°C, however, is found to optimize device performance, accompanied by an increase in PL efficiency and lifetime. Grazing-incidence small-angle X-ray scattering is also performed to study the evolution in film nanomorphology with annealing, with the 140,°C-annealed film showing enhanced phase separation. It is concluded that reorganization of P3HT alone is not sufficient to optimize device performance but must also be accompanied by a coarsening of the morphology to promote charge separation. The shape of the photocurrent action spectra of P3HT:F8TBT devices is also studied, aided by optical modeling of the absorption spectrum of the blend in a device structure. Changes in the shape of the photocurrent action spectra with annealing are observed, and these are attributed to changes in the relative contribution of each polymer to photocurrent as morphology and polymer conformation evolve. In particular, in as-spun films from xylene, photocurrent is preferentially generated from ordered P3HT segments attributed to the increased charge separation efficiency in ordered P3HT compared to disordered P3HT. For optimized devices, photocurrent is efficiently generated from both P3HT and F8TBT. In contrast to blends with F8TBT, P3HT is only found to reorganize in blends with F8BT at annealing temperatures of over 200,°C. The low efficiency of the P3HT:F8BT system can then be attributed to poor charge generation and separation efficiencies that result from the failure of P3HT to reorganize. [source]


    Synthesis and characterization of temperature-sensitive block copolymers from poly(N -isopropylacrylamide) and 4-methyl-,-caprolactone or 4-phenyl-,-caprolactone

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2010
    Ren-Shen Lee
    Abstract This study synthesizes thermally sensitive block copolymers poly(N -isopropylacrylamide)- b -poly(4-methyl-,-caprolactone) (PNIPA- b -PMCL) and poly(N -isopropylacrylamide)- b -poly(4-phenyl-,-caprolactone) (PNIPA- b -PBCL) by ring-opening polymerization of 4-methyl-,-caprolactone (MCL) or 4-phenyl-,-caprolactone (BCL) initiated from hydroxy-terminated poly(N -isopropylacrylamide) (PNIPA) as the macroinitiator in the presence of SnOct2 as the catalyst. This research prepares a PNIPA bearing a single terminal hydroxyl group by telomerization using 2-hydroxyethanethiol (ME) as a chain-transfer agent. These copolymers are characterized by differential scanning calorimetry (DSC), 1H-NMR, FTIR, and gel permeation chromatography (GPC). The thermal properties (Tg) of diblock copolymers depend on polymer compositions. Incorporating larger amount of MCL or BCL into the macromolecular backbone decreases Tg. Their solutions show transparent below a lower critical solution temperature (LCST) and opaque above the LCST. LCST values for the PNIPA- b -PMCL aqueous solution were observed to shift to lower temperature than that for PNIPA homopolymers. This work investigates their micellar characteristics in the aqueous phase by fluorescence spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). The block copolymers formed micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range of 0.29,2.74 mg L,1, depending on polymer compositions, which dramatically affect micelle shape. Drug entrapment efficiency and drug loading content of micelles depend on block polymer compositions. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]


    Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers

    JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2005
    Li Yang
    Abstract Poly(fluorene)-type materials are widely used in polymer-based emitting devices. During operation there appears, however, an additional emission peak at around 2.3 eV, leading to both a color instability and reduced efficiency. The incorporation of the carbazole units has been proven to efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate two series of alternating fluorene/carbazole oligomers and copolymers poly[2,7-(N-(2-methyl)-carbazole)- co - alt -2,7-m(9,9-dimethylfluorene)], namely, PFmCz (m = 1,2) and gain a detailed understanding of the influence of carbazole units on the electronic and optical properties of fluorene derivatives. The electronic properties of the neutral molecules, HOMO-LUMO gaps (,H-L), in addition to the positive and negative ions, are studied using B3LYP functional. The lowest excitation energies (Egs) and the maximal absorption wavelength ,abs of PFmCz (m = 1,2) are studied, employing the time-dependent density functional theory (TD-DFT). The properties of the two copolymers, such as ,H-L, Eg, IPs, and EAs were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n = 0). The outcomes showed that the carbazole unit is a good electron-donating moiety for electronic materials, and the incorporation of carbazole into the polyfluorene (PF) backbone resulted in a broadened energy gap and a blue shift of both the absorption and photoluminescence emission peaks. Most importantly, the HOMO energies of PF1Cz and PF2Cz are both a higher average (0.4 eV) than polyfluorene (PF), which directly results in the decreasing of IPs of about 0.2 eV more than PF, indicating that the carbazole units have significantly improved the hole injection properties of the copolymers. In addition, the energy gap tends to broaden and the absorption and emission peaks are gradually blue-shifted to shorter wavelengths with an increase in the carbazole content in the copolymers. This is due to the interruption of the longer conjugation length of the backbone in the (F1Cz)n series. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 969,979, 2005 [source]


    Synthesis and electroluminescent properties of fluorene-based copolymers containing electron-withdrawing thiazole derivatives

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 21 2008
    In Hwan Jung
    Abstract We synthesized two fluorene-based copolymers poly[(2,5-bis(4-hexylthiophen-2-yl)thiazolo[5,4-day]thiazole-5,5,-diyl)-alt-(9,9,-dioctylfluorene-2,7-diyl)] (PF-TTZT), and poly[(5,5,-bis(4-hexylthiophen-2-yl)-2,2,-bithiazole-5,5,-diyl)-alt-(9,9,-dioctylfluorene-2,7-diyl)] (PF-TBTT), which contain the electron-withdrawing moieties, thiazolothiazole, and bithiazole, respectively. Through electrochemical studies, we found that these two polymers exhibit stable reversible oxidation and reduction behaviors. Moreover, the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy levels of PF-TBTT are lower than those of PF-TTZT, and the bandgap of PF-TBTT is smaller than that of PF-TTZT. Thus the bithiazole moiety in PF-TBTT is more electron-withdrawing than the thiazolothiazole moiety in PF-TTZT. Light-emitting devices with indium tin oxide (ITO)/poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)(PEDOT)/polymer/bis(2-methyl-8-quinolinato)-4-phenylphenolate aluminum (BAlq)/LiF/Al configurations were fabricated. The performance of the PF-TBTT device was found to be almost three times better than that of the PF-TTZT device, which is because electron injection from the cathode to PF-TBTT is much easier than for PF-TTZT. We also investigated the planarity and frontier orbitals of the electron donor-acceptor (D-A) moieties with computational calculations using ab initio Hartree,Fock with the split-valence 6-31G* basis set. These calculations show that TBTT has a more nonplanar structure than TTZT and that the bithiazole moiety is more electron-withdrawing than thiazolothiazole. These calculations are in good agreement with the experimental results. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7148,7161, 2008 [source]


    One-pot synthesis of heterograft copolymers via "graft onto" by atom transfer nitroxide radical coupling chemistry

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 20 2008
    Qiang Fu
    Abstract Heterograft copolymers poly(4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl- co - ethylene oxide)- graft -polystyrene and poly(tert -butyl acrylate) (poly (GTEMPO- co -EO)- g -PS/PtBA) were synthesized in one-pot by atom transfer nitroxide radical coupling (ATNRC) reaction via "graft onto." The main chain was prepared by the anionic ring-opening copolymerization of ethylene oxide (EO) and 4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl (GTEMPO) first, then the polystyrene and poly (tert -butyl acrylate) with bromine end (PS-Br, PtBA-Br) were prepared by atom transfer radical polymerization (ATRP). When three of them were mixed each other in the presence of CuBr/N,N,N,,N,,N,-pentamethyldiethylenetriamine (PMDETA) at 90 °C, the formed secondary carbon radicals at the PS and PtBA chain ends were quickly trapped by nitroxide radicals on poly(GTEMPO- co -EO). The heterograft copolymers were well defined by 1H NMR, size exclusion chromatography, fourier transform infrared, and differential scanning calorimetry in detail. It was found that the density of GTEMPO groups on main chain poly(GTEMPO- co -EO), the molecular weights of PS/PtBA side chains, and the structure of macroradicals can exert the great effects on the graft efficiency. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6770,6779, 2008 [source]


    Synthesis of AB-type block copolymers containing benzoxazole and anthracene groups by ATRP and fluorescent property

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 17 2007
    Jian-Mei Lu
    Abstract Two functional monomers, methacrylic acid 4-(2-benzoxazol)-benzyl ester (MABE) containing the benzoxazole group and 4-(2-(9-anthryl))-vinyl-styrene (AVS) containing the anthracene group were synthesized by rational design. The MABE was polymerized via atom transfer radical polymerization (ATRP) using ethyl 2-bromoisobutyrate (EBIB) as initiator in CuBr/N,N,N,,N,,N,-pentamethyldiethylenetriamine (PMDETA) catalyst system; block copolymers poly(MABE- b -AVS) was obtained, which was conducted by using poly(MABE) as macro-initiator, AVS as the second monomer, and CuBr/PMDETA as catalyst. The constitute of two monomers in block copolymers poly(MABE- b -AVS) by ATRP could be adjusted, that is the constitute of the benzoxazole group and the anthracene group could be controlled in AB-type block copolymers. Moreover, the fluorescent properties of homopolymers poly(MABE) and block copolymers poly(MABE- b -AVS) were discussed herein. With the excitation at ,ex = 330 nm, the fluorescent emission spectrum of poly(MABE) solution showed emission at 375 nm corresponding to the benzoxazole-based part; with the same excitation, the fluorescent emission spectrum of poly(MABE- b -AVS) solution showed a broad peek at 330,600 nm when the monomer AVS to the total monomers mole ratio was 0.31, and the fluorescent emission spectrum of poly(MABE- b -AVS) in film state only showed one peak at 525 nm corresponding to the anthracene-based unit that indicated a complete energy transfer from the benzoxazole group to the anthracene group. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3894,3901, 2007 [source]


    A Self-Assembly Approach to Temperature-Responsive Polymer Nanocontainers

    MACROMOLECULAR RAPID COMMUNICATIONS, Issue 17 2004
    Xiangrong Chen
    Abstract Summary: Thermosensitive polymer nanocontainers were formed by self-assembly of diblock copolymers poly(2-cinnamoylethyl methacrylate)- block -poly(N -isopropylacrylamide) (PCEMA- block -PNIPAM) and subsequent photo-crosslinking of the PCEMA shells. It was found that the diameter of the nanocontainers ranges from tens of nanometers to thousands of nanometers, depending on the self-assembly conditions. The phase transition of the nanocontainers takes place at 32,°C; the structural changes are reversible in a heating and cooling cycle. Schematic illustration of the structural transition behavior of the thermosensitive polymer nanocontainers. [source]


    Synthesis of poly(aryl ether sulfone)- graft -polystyrene and poly(aryl ether sulfone)- graft -[polystyrene- block -poly(methyl methacrylate)] through atom transfer radical polymerization

    POLYMER INTERNATIONAL, Issue 8 2002
    Guyu Xiao
    Abstract A new graft copolymers poly(aryl ether sulfone)- graft -polystyrene (PSF- g -PS) and poly(aryl ether sulfone)- graft -[polystyrene- block -poly(methyl methacrylate)] (PSF- g -(PS- b -PMMA)) were successfully prepared via atom transfer radical polymerisation (ATRP) catalyzed by FeCl2/isophthalic acid in N,N -dimethyl formamide. The products were characterized by GPC, DSC, IR, TGA and NMR. The characterization data indicated that the graft copolymerization was accomplished via conventional ATRP mechanism. The effect of chloride content of the macroinitiator on the graft copolymerization was investigated. Only one glass transition temperature (Tg) was detected by DSC for the graft copolymer PSF- g -PS and two glass transition temperatures were observed in the DSC curve of PSF- g -(PS- b -PMMA). The presence of PSF in PSF- b -PS or PSF- g -(PS- b -PMMA) was found to improve thermal stabilities. © 2002 Society of Chemical Industry [source]