Home About us Contact | |||
Activation Regions (activation + regions)
Selected AbstractsAssessment of Finger Forces and Wrist Torques for Functional Grasp Using New Multichannel Textile NeuroprosthesesARTIFICIAL ORGANS, Issue 8 2008Marc Lawrence Abstract:, New multichannel textile neuroprotheses were developed, which comprise multiple sets of transcutaneous electrode arrays and connecting wires embroidered into a fabric layer. The electrode arrays were placed on the forearm above the extrinsic finger flexors and extensors. Activation regions for selective finger flexion and wrist extension were configured by switching a subset of the array elements between cathode, anode, and off states. We present a new isometric measurement system for the assessment of finger forces and wrist torques generated using the new neuroprostheses. Finger forces (from the middle phalanxes) were recorded using five load cells mounted on a "grasp handle" that can be arbitrarily positioned in space. The hand and the grasp handle were rigidly mounted to a 6-degree of freedom load cell, and the forces and torques about the wrist were recorded. A vacuum cushion was used to comfortably fixate the forearm. The position and orientation of the forearm, wrist, fingers, and handle were recorded using a new three-dimensional position measurement system (accuracy <±1 mm). The measurement system was integrated into the real-time multichannel transcutaneous electrode environment, which is able to control the spatiotemporal position of multiple activation regions. Using the combined system and textile neuroprosthesis, we were able to optimize the activation regions to produce selective finger and wrist articulation, enabling improved functional grasp. [source] fMRI Activation in Continuous and Spike-triggered EEG,fMRI Studies of Epileptic SpikesEPILEPSIA, Issue 10 2003Abdulla Al-Asmi Summary:,Purpose: To evaluate functional magnetic resonance imaging (fMRI) with simultaneous EEG for finding metabolic sources of epileptic spikes. To find the localizing value of activated regions and factors influencing fMRI responses. Methods: Patients with focal epilepsy and frequent spikes were subjected to spike-triggered or continuous fMRI with simultaneous EEG. Results were analyzed in terms of fMRI activation, concordance with the location of EEG spiking and anatomic MRI abnormalities, and other EEG and clinical variables. In four patients, results also were compared with those of intracerebral EEG. Results: Forty-eight studies were performed on 38 patients. Seventeen studies were not analyzed, primarily because no spikes occurred during scanning. Activation was obtained in 39% of 31 studies, with an activation volume of 2.55 ± 4.84 cc. Activated regions were concordant with EEG localization in almost all studies and confirmed by intracerebral EEG in four patients. Forty percent of patients without an MRI lesion showed activation; 37.5% of patients with a lesion had an activation; the activation was near or inside the lesion. Bursts of spikes were more likely to generate an fMRI response than were isolated spikes (76 vs. 11%; p < 0.05). Conclusions: Combining EEG and fMRI in focal epilepsy yields regions of activation that are presumably the source of spiking activity. These regions are highly linked with epileptic foci and epileptogenic lesions in a significant number of patients. Activation also is found in patients with no visible MRI lesion. Intracerebral recordings largely confirm that these activation regions represent epileptogenic areas. It is still unclear why many patients show no activation. [source] Assessment of Finger Forces and Wrist Torques for Functional Grasp Using New Multichannel Textile NeuroprosthesesARTIFICIAL ORGANS, Issue 8 2008Marc Lawrence Abstract:, New multichannel textile neuroprotheses were developed, which comprise multiple sets of transcutaneous electrode arrays and connecting wires embroidered into a fabric layer. The electrode arrays were placed on the forearm above the extrinsic finger flexors and extensors. Activation regions for selective finger flexion and wrist extension were configured by switching a subset of the array elements between cathode, anode, and off states. We present a new isometric measurement system for the assessment of finger forces and wrist torques generated using the new neuroprostheses. Finger forces (from the middle phalanxes) were recorded using five load cells mounted on a "grasp handle" that can be arbitrarily positioned in space. The hand and the grasp handle were rigidly mounted to a 6-degree of freedom load cell, and the forces and torques about the wrist were recorded. A vacuum cushion was used to comfortably fixate the forearm. The position and orientation of the forearm, wrist, fingers, and handle were recorded using a new three-dimensional position measurement system (accuracy <±1 mm). The measurement system was integrated into the real-time multichannel transcutaneous electrode environment, which is able to control the spatiotemporal position of multiple activation regions. Using the combined system and textile neuroprosthesis, we were able to optimize the activation regions to produce selective finger and wrist articulation, enabling improved functional grasp. [source] |