Home About us Contact | |||
Activating Peptide (activating + peptide)
Selected AbstractsPlatelet concentrates transfusion in cardiac surgery and platelet function assessment by multiple electrode aggregometryACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 2 2009N. RAHE-MEYER Background: Platelet dysfunction contributes to the pathophysiology of bleeding complications during and after cardiac surgery. In most surgical institutions, no peri-operative point-of-care monitoring of platelet function is used. We evaluated the usefulness of the Multiplate® platelet function analyser based on impedance aggregometry for identifying groups of patients at a high risk of transfusion of platelet concentrates (PC). Methods: Platelet function parameters were determined in 60 patients before and after routine cardiac surgery. Impedance aggregometry measurements were performed on Multiplate® using ADP (ADPtest), collagen (COLtest) and thrombin receptor activating peptide (TRAPtest) as platelet activators. The correlations between the aggregometry results and the transfusion of PC were calculated. The results of the aggregation tests were also divided into tertiles and the differences in PC transfusion between the low and the high tertile were assessed. Results: Low aggregometry delimited groups of patients with significantly higher PC transfusion. In the receiver operating characteristic curve, low pre-operative aggregation in the ADPtest identified patients with high total transfusion of PC (area under the curve 0.74, P=0.001), while the ADPtest performed at the end of the operation identified patients with high PC transfusion on the intensive care unit (ICU) (area under the curve 0.76, P=0.002). Conclusions: Near-patient platelet aggregation may allow the identification of patients with enhanced risk of PC transfusion, both pre-operatively and upon arrival on the ICU. [source] Innervation pattern and Ca2+ signalling in labial salivary glands of healthy individuals and patients with primary Sjögren's syndrome (pSS)JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 3 2000Anne Marie Pedersen Abstract: We have characterised the innervation pattern and intracellular Ca2+ -signalling in labial salivary glands (LSG) of 16 patients with primary Sjögren's syndrome (pSS) and 27 healthy controls. Numerous immunoreactive nerve fibers (IRF) containing vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP) were found around acini, ducts and blood vessels. Substance P (SP)-, neuropeptide Y-, tyrosine hydroxylase- and nitric oxide synthase-IRF were mainly surrounding ducts and blood vessels. The majority of pSS patients had inflamed LSG and the presence of focal lymphocytic infiltrates (FI) were more frequent and pronounced as compared with healthy controls. In areas with normal or diffusely inflamed LSG tissue, pSS patients demonstrated the same distribution of IRF as healthy controls with similar histology. However, IRF were absent in central areas of FI both in pSS and age-matched healthy controls. Although all pSS patients had hyposalivation, stimulation with acetylcholine, norepinephrine, phenylephrine, isoproterenol, VIP, PACAP, SP, adenosine 5,-triphosphate and uridine 5,-triphosphate induced the same increase in the intracellular free Ca2+ concentration in LSG acini from both pSS patients and healthy controls, indicating the presence of functional receptor systems in vitro. [source] Platelet hyperprocoagulant activity in Type 2 diabetes mellitus: attenuation by glycoprotein IIb/IIIa inhibitionJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 12 2008M. RAZMARA Summary.,Background:,Platelets are hyperactive in Type 2 diabetes mellitus (T2DM), and antiplatelet treatment with glycoprotein (GP) IIb/IIIa inhibitors provides better thrombotic protection in DM than in non-diabetic subjects. Objective:,We hypothesized that diabetic platelets are hyperprocoagulant, and that this hyperactivity can be inhibited by GPIIb/IIIa blockade. Methods:,Patients with T2DM and gender/age/body mass index-matched non-diabetic controls were recruited (n = 12 for both) to study the effect of GPIIb/IIIa blockade on platelet procoagulant activity. Platelet phosphotidylserine (PS), factor (F) Va expression, and platelet-derived microparticle (PDMP) generation were measured by whole blood flow cytometry. Platelet-dependent thrombin generation and plasma clotting time were monitored in recalcified platelet-rich plasma. Results:,Compared to controls, basal platelet activation was similar, while thrombin receptor activating peptide stimulated activation was enhanced in patients with T2DM. Diabetic platelets also displayed more profound elevations of platelet PS exposure, FVa binding, and PDMP generation upon stimulation. These alterations resulted in a hyperprocoagulant state, as evidenced by a marked increase in the platelet procoagulant index, enhanced thrombin generation, and a shortened plasma clotting time. GPIIb/IIIa blockade by c7E3 or SR121566 decreased platelet PS exposure and FVa binding, and diminished platelet procoagulant activity in patients with T2DM. Conclusions:,Platelets have increased procoagulant activity in patients with T2DM. The hyperprocoagulant activity is counteracted by GPIIb/IIIa blockade. [source] Fps/Fes and Fer non-receptor protein-tyrosine kinases regulate collagen- and ADP-induced platelet aggregationJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 5 2003Y. A. Senis Summary., Fps/Fes and Fer proto-oncoproteins are structurally related non-receptor protein-tyrosine kinases implicated in signaling downstream from cytokines, growth factors and immune receptors. We show that Fps/Fes and Fer are expressed in human and mouse platelets, and are activated following stimulation with collagen and collagen-related peptide (CRP), suggesting a role in GPVI receptor signaling. Fer was also activated following stimulation with thrombin and a protease-activated receptor4 (PAR4)-activating peptide, suggesting a role in signaling downstream from the G protein-coupled PAR4. There were no detectable perturbations in CRP-induced activation of Syk, PLC,2, cortactin, Erk, Jnk, Akt or p38 in platelets from mice lacking Fps/Fes, Fer, or both kinases. Platelets lacking Fps/Fes, from a targeted fps/fes null strain of mice, showed increased rates and amplitudes of collagen-induced aggregation, relative to wild-type platelets. P-Selectin expression was also elevated on the surface of Fps/Fes-null platelets in response to CRP. Fer-deficient platelets, from mice targeted with a kinase-inactivating mutation, disaggregated more rapidly than wild-type platelets in response to ADP. This report provides the first evidence that Fps/Fes and Fer are expressed in platelets and become activated downstream from the GPVI collagen receptor, and that Fer is activated downstream from a G-protein coupled receptor. Furthermore, using targeted mouse models we show that deficiency in Fps/Fes or Fer resulted in disregulated platelet aggregation and disaggregation, demonstrating a role for these kinases in regulating platelet functions. [source] Thrombin activation of proteinase-activated receptor 1 potentiates the myofilament Ca2+ sensitivity and induces vasoconstriction in porcine pulmonary arteriesBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2010Jun Maki Background and purpose:, Thrombus formation is commonly associated with pulmonary arterial hypertension (PAH). Thrombin may thus play an important role in the pathogenesis and pathophysiology of PAH. Hence, we investigated the contractile effects of thrombin and its mechanism in pulmonary artery. Experimental approach:, The cytosolic Ca2+ concentrations ([Ca2+]i), 20 kDa myosin light chain (MLC20) phosphorylation and tension development were evaluated using the isolated porcine pulmonary artery. Key results:, Thrombin induced a sustained contraction in endothelium-denuded strips obtained from different sites of a pulmonary artery, ranging from the main pulmonary artery to the intrapulmonary artery. In the presence of endothelium, thrombin induced a transient relaxation. The contractile effect of thrombin was abolished by either a protease inhibitor or a proteinase-activated receptor 1 (PAR1) antagonist, while it was mimicked by PAR1 -activating peptide (PAR1AP), but not PAR4AP. The thrombin-induced contraction was associated with a small elevation of [Ca2+]i and an increase in MLC20 phosphorylation. Thrombin and PAR1AP induced a greater increase in tension for a given [Ca2+]i elevation than that obtained with high K+ -depolarization. They also induced a contraction at a fixed Ca2+ concentration in ,-toxin-permeabilized preparations. Conclusions and implications:, The present study revealed a unique property of the pulmonary artery. In contrast to normal arteries of the systemic circulation, thrombin induces a sustained contraction in the normal pulmonary artery, by activating PAR1 and thereby increasing the sensitivity of the myofilament to Ca2+. This responsiveness of the pulmonary artery to thrombin may therefore contribute to the pathogenesis and pathophysiology of PAH. [source] Expression of the neutrophil-activating CXC chemokine ENA-78/CXCL5 by human eosinophilsCLINICAL & EXPERIMENTAL ALLERGY, Issue 4 2003T. Persson Summary Background Eosinophils are seen at sites of inflammation in diseases such as helminthic infestation, asthma, ulcerative colitis and some neoplastic diseases. They are also associated with connective tissue remodelling, for example in longstanding asthma. In the present study, we investigated whether eosinophils express the CXC chemokine epithelial cell-derived neutrophil activating peptide (ENA-78/CXCL5), a chemokine that can activate neutrophils and in addition possesses angiogenic properties. Immunocytochemistry detected CXCL5 in eosinophils and the peptide was localized in the specific granules by immunoelectron microscopy. Methods and Results In eosinophil lysates, 12 ± 2 pg (mean ± SEM) of CXCL5 was detected per 106 cells by enzyme-linked immunosorbent assay (ELISA). Weak constitutive expression of CXCL5, as well as the related CXC chemokine IL,8/CXCL8, could be detected in freshly isolated eosinophils by RT,PCR. However, during prolonged incubation of eosinophils, a strong increase in both CXCL5 and IL-8/CXCL8 expression was seen, as detected by RT-PCR, and increasing amounts of CXCL5 peptide with time were detected in the incubation medium by ELISA. Addition of TNF-, neutralizing antibodies during prolonged incubation significantly inhibited CXCL5 production, demonstrating involvement of auto- and paracrine effects from TNF-, produced by eosinophils themselves. Addition of IFN-, showed a strong inhibitory effect on CXCL5 synthesis. Conclusion These findings suggest that, through expression of CXCL5, eosinophils can recruit and activate CXC receptor 2 (CXCR2)-bearing cells such as neutrophils at sites of inflammation. Eosinophils may also promote connective tissue remodelling through release of this peptide. [source] |