Home About us Contact | |||
Convergence Tests (convergence + test)
Selected AbstractsRadial distribution and strong lensing statistics of satellite galaxies and substructure using high-resolution ,CDM hydrodynamical simulationsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2006Andrea V. Macciò ABSTRACT We analyse the number density and radial distribution of substructures and satellite galaxies using cosmological simulations that follow the gas dynamics of a baryonic component, including shock heating, radiative cooling and star formation within the hierarchical concordance Lambda cold dark matter model. We find that the dissipation of the baryons greatly enhances the survival of subhaloes, especially in the galaxy core, resulting in a radial distribution of satellite galaxies that closely follows the overall mass distribution. Hydrodynamical simulations are necessary to resolve the adiabatic contraction and dense cores of galaxies, resulting in a total number of satellites a factor of 2 larger than that found in pure dark matter simulation, in good agreement with the observed spatial distribution of satellite galaxies within galaxies and clusters. Convergence tests show that the cored distribution found by previous authors in pure N -body simulations was due to the physical overmerging of dark matter only structures. We proceed to use a ray-shooting technique in order to study the impact of these additional substructures on the number of violations of the cusp caustic magnification relation. We develop a new approach to try to disentangle the effect of substructures from the intrinsic discreteness of N -body simulations. Even with the increased number of substructures in the centres of galaxies, we are not able to reproduce the observed high numbers of discrepancies observed in the flux ratios of multiply lensed quasars. [source] Numerical simulation of granular materials by an improved discrete element methodINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 5 2005J. Fortin Abstract In this paper, we present an improved discrete element method based on the non-smooth contact dynamics and the bi-potential concept. The energy dissipated during the collisions is taken into account by means of restitution coefficients. The interaction between particles is modelled by Coulomb unilateral contact law with dry friction which is typically non-associated: during the contact, the sliding vector is not normal to the friction cone. The main feature of our algorithm is to overcome this difficulty by means of the bi-potential theory. It leads to an easy implement predictor,corrector scheme involving just an orthogonal projection onto the friction cone. Moreover the convergence test is based on an error estimator in constitutive law using the corner stone inequality of the bipotential. Then we present numerical simulations which show the robustness of our algorithm and the various possibilities of the software ,MULTICOR' developed with this approach. Copyright © 2004 John Wiley & Sons, Ltd. [source] Using vorticity to define conditions at multiple open boundaries for simulating flow in a simplified vortex settling basinINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 1 2007A. N. Ziaei Abstract In this paper a method is developed to define multiple open boundary (OB) conditions in a simplified vortex settling basin (VSB). In this method, the normal component of the momentum equation is solved at the OBs, and tangential components of vorticity are calculated by solving vorticity transport equations only at the OBs. Then the tangential vorticity components are used to construct Neumann boundary conditions for tangential velocity components. Pressure is set to its ambient value, and the divergence-free condition is satisfied at these boundaries by employing the divergence as the Neumann condition for the normal-direction momentum equation. The 3-D incompressible Navier,Stokes equations in a primitive-variable form are solved using the SIMPLE algorithm. Grid-function convergence tests are utilized to verify the numerical results. The complicated laminar flow structure in the VSB is investigated, and preliminary assessment of two popular turbulence models, k,, and k,,, is conducted. Copyright © 2006 John Wiley & Sons, Ltd. [source] Numerical simulations of type III planetary migration , I. Disc model and convergence testsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2008A. Pepli ABSTRACT We investigate the fast (type III) migration regime of high-mass protoplanets orbiting in protoplanetary discs. This type of migration is dominated by corotational torques. We study the details of flow structure in the planet's vicinity, the dependence of migration rate on the adopted disc model and the numerical convergence of models (independence of certain numerical parameters such as gravitational softening). We use two-dimensional hydrodynamical simulations with adaptive mesh refinement, based on the flash code with improved time-stepping scheme. We perform global disc simulations with sufficient resolution close to the planet, which is allowed to freely move throughout the grid. We employ a new type of equation of state in which the gas temperature depends on both the distance to the star and planet, and a simplified correction for self-gravity of the circumplanetary gas. We find that the migration rate in the type III migration regime depends strongly on the gas dynamics inside the Hill sphere (Roche lobe of the planet) which, in turn, is sensitive to the aspect ratio of the circumplanetary disc. Furthermore, corrections due to the gas self-gravity are necessary to reduce numerical artefacts that act against rapid planet migration. Reliable numerical studies of type III migration thus require consideration of both the thermal and the self-gravity corrections, as well as a sufficient spatial resolution and the calculation of disc,planet attraction both inside and outside the Hill sphere. With this proviso, we find type III migration to be a robust mode of migration, astrophysically promising because of a speed much faster than in the previously studied modes of migration. [source] |