Home About us Contact | |||
Convective Boundary Layer (convective + boundary_layer)
Selected AbstractsThe canopy conductance of a boreal aspen forest, Prince Albert National Park, CanadaHYDROLOGICAL PROCESSES, Issue 9 2004P. D. Blanken Abstract Annual fluxes of canopy-level heat, water vapour and carbon dioxide were measured using eddy covariance both above the aspen overstory (Populus tremuloides Michx.) and hazelnut understory (Corylus cornuta Marsh.) of a boreal aspen forest (53·629 °N 106·200 °W). Partitioning of the fluxes between overstory and understory components allowed the calculation of canopy conductance to water vapour for both species. On a seasonal basis, the canopy conductance of the aspen accounted for 70% of the surface conductance, with the latter a strong function of the forest's leaf area index. On a half-hour basis, the canopy conductance of both species decreased non-linearly as the leaf-surface saturation deficits increased, and was best parameterized and showed similar sensitivities to a modified form of the Ball,Berry,Woodrow index, where relative humidity was replaced with the reciprocal of the saturation deficit. The negative feedback between the forest evaporation and the saturation deficit in the convective boundary layer varied from weak when the forest was at full leaf to strong when the forest was developing or loosing leaves. The coupling between the air at the leaf surface and the convective boundary layer also varied seasonally, with coupling decreasing with increasing leaf area. Compared with coniferous boreal forests, the seasonal changes in leaf area had a unique impact on vegetation,atmosphere interactions. Copyright © 2004 John Wiley & Sons, Ltd. [source] The impact of soil moisture modifications on CBL characteristics in West Africa: A case-study from the AMMA campaignTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue S1 2010M. Kohler Abstract Within the framework of the AMMA campaign in 2006, the response of surface properties to precipitation and their effect on the state of the convective boundary layer (CBL) and on convective instability were analysed. The observation periods covered the pre-monsoon onset (SOP 1) and the mature monsoon phase (SOP 2) and were performed in southwest Burkina Faso. Precipitation caused a distinctive increase in the volumetric soil moisture content in the upper 20 cm of the soil. Coupled with the increase in soil moisture, a continuous decrease of surface and soil temperature with time was observed. Changes in surface temperature, albedo, and a higher availability of water affected the partitioning of the energy balance. Highest values of the Bowen ratio were found during SOP 1 when the surface was dry and vegetation sparse. In SOP 2, a higher vegetation cover made the albedo and Bowen ratio less sensitive to changes in soil moisture. Modifications of surface fluxes influenced the CBL conditions. The CBL height in SOP 1 was 1658 m and in SOP 2 877 m. The heat budget of the CBL was dominated by sensible heat flux convergence, whereas the moisture budget was controlled by both advection and latent heat flux convergence. It was confirmed by the measurements that the diurnal development of convective instability was dominated by the CBL evolution and controlled by changes in the mid- or upper troposphere to a minor degree only. Linear correlations were found between the near-surface equivalent potential temperature and both convective available potential energy and convection index. Copyright © 2009 Royal Meteorological Society [source] Variance scaling in shallow-cumulus-topped mixed layersTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 628 2007R. A. J. Neggers Abstract Scaling of thermodynamic variance in shallow-cumulus-topped mixed layers is studied using large-eddy simulation (LES). First, the performance of the top-down scaling (the turbulent flux at mixed-layer top divided by w*) is evaluated for transient shallow-cumulus convection over land. The results indicate that this scaling fails to capture all the variance in the top half of the mixed layer when shallow cumulus clouds are present. A variance-budget analysis is then performed, to derive a new scaling for the variance at mixed-layer top, which differs from the standard top-down scaling by a factor of one Richardson number. The essential new features of the proposed scaling are that the local vertical gradient is retained and that a balance is assumed between gradient production of variance and removal by transport and dissipation, using an adjustment time-scale given by w*/h. Evaluation against LES for a range of different cases, including a dry convective boundary layer as well as steady-state marine and transient continental shallow cumulus, reveals a data-collapse of the newly-scaled variance, for all hours and all cases in the top half of the mixed layer. The corresponding vertical structure is shown to resemble a power-law function. The results suggest that the structure of variance in the dry convective boundary layer is similar to that in the sub-cloud mixed layer. In transient situations, the scaling reproduces the time-development of variance at sub-cloud mixed-layer top. The new cloud-base variance scale is then further interpreted in the context of statistical cloud schemes, which depend on the variance as the second moment of the associated probability density function. The results suggest that the area fraction of the moist convective thermals uniquely depends on the ratio of cloud-base transition-layer depth to sub-cloud mixed-layer depth. This puts ,valve'- or ventilation-type closures for the cloud-base mass flux in the context of the variance budget for the sub-cloud layer. Copyright © 2007 Royal Meteorological Society [source] The influence of large convective eddies on the surface-layer turbulenceTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 618 2006S. S. Zilitinkevich Abstract Close to the surface large coherent eddies consisting of plumes and downdraughts cause convergent winds blowing towards the plume axes, which in turn cause wind shears and generation of turbulence. This mechanism strongly enhances the convective heat/mass transfer at the surface and, in contrast to the classical formulation, implies an important role of the surface roughness. In this context we introduce the stability-dependence of the roughness length. The latter is important over very rough surfaces, when the height of the roughness elements becomes comparable with the large-eddy Monin,Obukhov length. A consistent theoretical model covering convective regimes over all types of natural surfaces, from the smooth still sea to the very rough city of Athens, is developed; it is also comprehensively validated against data from measurements at different sites and also through the convective boundary layer. Good correspondence between model results, field observations and large-eddy simulation is achieved over a wide range of surface roughness lengths and convective boundary-layer heights. Copyright © 2007 Royal Meteorological Society [source] Combination theory and equilibrium evaporationTHE QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, Issue 574 2001M. R. Raupach Abstract This paper is an analysis of equilibrium evaporation and its role in the energy balance of a terrestrial surface, as described by combination theory. Three themes are covered: first, a brief historical review identifies multiple definitions of the concept of equilibrium evaporation. Second, these are formalized by developing the basic principles of combination theory with minimum approximation. Several measures are utilized to do this: linearization is avoided, radiative and storage coupling are incorporated systematically, and actual and linearized saturation deficits are distinguished. The formalism is used to analyse several algebraically defined states and limits for the surface energy balance. Third, the thermodynamic foundation of equilibrium evaporation is analysed by studying surface-atmosphere feedbacks in arbitrary closed and open evaporating systems. It is shown that under steady energy supply any closed evaporating system evolves towards a quasi-steady state in which the Bowen ratio takes the equilibrium value 1/,v, where ,v is the ratio of the latent- and sensible-heat contents of saturated air with temperature, evaluated at the volume-averaged temperature in the closed system. This applies whether the system is well-mixed or imperfectly mixed, and whatever the internal distribution of surface fluxes and surface and aerodynamic resistances. In contrast, open systems cannot reach such an equilibrium. This evolutionary definition of equilibrium evaporation differs from an alternative algebraic definition, the fully decoupled limit. The differences between the two definitions are identified, and the evolutionary definition is shown to be more fundamental. Thus, the correct temperature for evaluating , in determining equilibrium evaporation is the volume-averaged temperature in a closed region, which in the case of a convective boundary layer is well approximated by the mixed-layer temperature. [source] Another riddle of the sandsASTRONOMY & GEOPHYSICS, Issue 2 2009Article first published online: 23 MAR 200 Researchers seeking to understand atmospheric circulation have found clues in the scale and distribution of giant dunes around planet Earth, which are related to the depth of the convective boundary layer. [source] Mechanisms for intensification and maintenance of numerically simulated dust devilsATMOSPHERIC SCIENCE LETTERS, Issue 1 2010Hiroshi Ohno Abstract A large eddy simulation (LES) of a well-developed convective boundary layer (CBL) under no mean wind condition was performed with the Weather Research and Forecasting model in order to investigate the mechanisms for the intensification and maintenance of dust devils. By examining intense vortices from high temporal-frequency outputs, it was found that most of the intense vortices are intensified through the merger of multiple vortices. Moreover, such a significantly intense vortex was maintained and more enhanced by additionally merging small-scale vortices and tilting horizontal vortices at boundaries of convective cells. Copyright © 2010 Royal Meteorological Society [source] |